Chapter 7 Approximation Theory

Least Square Approximation

The general problem of fitting the best least squares line to a

collection of data {(xl- » Vi )} ;.n:l involves minimizing
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These equations simplify to the normal equations:
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The solution to this system of equations is
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The general problem of approximating a set of data, {(xl Vil iz 1,

n

with an algebraic polynomial P, (x) = Z a kxk of degree n<m —1
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using the least squares procedure is handled in a similar manner. It

requires choosing the constants a,a;,...,a, to minimize the least

squarcs error
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As in the linear case, for £ to be minimized, it is necessary that

aE/aaj =0 foreach j=0,1,...,n. Thus, foreach j,
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This gives 7 +1 normal equations in the 7 +1 unknowns, a Iz
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It is helpful to write the equations as follows:
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It can be shown that the normal equations have a unique solution

provided that the x;, i =1,2,...,m are distinct.

Occasionally it is appropriate to assume that the data are

exponentially related. This requires the approximating function to be of

the form

y = be™ ()
or

v = by ©)

for some constants a and b. Considering the logarithm of the

approximating equations:

Iny=Inb+ax, in the case of Eq. (1)

and Iny=Inb+alnx, in the case of Eq. (2).

In either case, a linear problem now appears and solutions for Inb and



a can be obtained by appropriately modifying the normal equations (1)

and (2).

In fitting a function to data points {(xl- ), )} :.n:l , a linear combination

of any known functions, including polynomials, may be used:
g(x) = f1(x) + ca fo(x) + 3 f3(x) +-- ¢ [ (%) (3)
where f], f5,.. are prescribed functions, c¢;,c5,.. are undetermined

coefficients, and k is the total number of prescribed functions. By fitting

Eq. (3) to each data point, an over-determined equation is written as
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