Chapter 4 Numerical Differentiation
and Integration

Adaptive Quadrature

Quoted from [1] :

Suppose that we wish to approximate J’b f(x)dx to within a specified
a
tolerance & > 0. The first step in the procedure is to apply Simpson’s

rule with step size 4 = (b —a)/2. This results in the following.

5
J'ab £(x)dx =S(a,b) —Z—O F@ (), forsome W in (a,b)

where

S(a,b) = %[f(a) t4f(a+h)+ f(D)]

The next step is to determine a way to estimate the accuracy of our
approximation, in particular, one that does not require determining

f ) (M) . To accomplish this, we first apply the Composite Simpson’s

rule with 7 =4 and step size (b—a)/4 =h/2. Thus,
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for some [ in (a,b). To simplify notation, let
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Then Eq. (1) can be rewritten as
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The error estimation is derived by assuming that U = [I or, more

precisely that f ) (w=f ) (). The success of the technique

depends on the accuracy of this assumption. If it is accurate, then
equating the integrals in Egs. (1) and (2) implied that

a+b + b 1 > h
S, S F—,b — (4) = S(a,b)—— (4) ,
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Using this estimate in Eq. (2) produces the error estimation
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This implies that S(a,(a +b)/2) +S((a +b)/2,b) approximates
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Ia f(x)dx 15 times better than it agrees with the known value S(a,b).
Thus, if
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In this case,
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S @l, ath H+ S ELb ,b His assumed to be a sufficiently accurate
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approximation to .Ia f(x)dx . Otherwise repeat this procedure until the

tolerance is satisfied.
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