TeX File #6

\newcommand{\z}{\mbox{\large \sf Z \hspace{-1.1em} Z}}
\newcommand{\desda}{\mbox{$\ \Longleftrightarrow$\ }}
\newcommand{\eindebewijs}{\begin{flushright} $\Box$ \end{flushright}}
\newcommand{\isdef}{\stackrel{\rm def}{=}}
\author{Ugh \\ e-mail: ugh@webprimitives.com}
\title{\sc Some Fancy Math Equations...}
\begin{abstract} Some Fancy Math Stuff....

{\bf Some Fancy Math\/}


First, we have:
n_{i+1} = \left\{ \begin{array}{ll}
	3n_i+1 & \mbox{if $n_i \equiv 1 \pmod{2}$}\\ 
	n_i / 2 & \mbox{if $n_i \equiv 0 \pmod{2}$}

Second, we have:

\[f(z)=\sum_{n\ge0}{f_nz^n},\quad \hat{f}(z)=\sum_{n\ge0}{f_n{z^n\over

Third, we have:

\begin{equation} \label{motzkin}
 M_n = -\frac{1}{2} \sum_{k=\lceil \frac{n+2}{2} \rceil}^{n+2}
	(-1)^k {1/2 \choose k} {k \choose n+2-k} 2^{2k-n-2} 3^{n+2-k}.

Fourth, we have:

\begin{equation} \label{motzkin}
 M_n = -\frac{1}{2} \prod_{k=\lceil \frac{n+2}{2} \rceil}^{n+2}
	(-1)^k {1/2 \choose k} {k \choose n+2-k} 2^{2k-n-2} 3^{n+2-k}.

Fifth, we have:

$M(z) = (1-z-\sqrt{1-2z-3z^2})/(2z^2)$

Sixth, we have:

I(n,x) = \int_0^x \frac{dt}{1 + t^n}

Seventh, we have:

\dot{x}_{1}\,=\, Ku - \frac{1}{t} \, (x_{1}-T)\\[2mm]
\dot{x}_{2}\,=\, x_{3}\\[2mm]
\dot{x}_{3}\,=\, g \left( \frac{W_{a}}{W} \, (1-\frac{T}{x_{1}})
-1-\frac{\mu}{W} \,x_{3} \right)

Eighth, we have:

8000\,Tt\, y_{3} - 400(T +Kt\, u)\, y_{2}^{2} - 40\, \Big( \mu\, (Kt\,u +T)\,
y_{1} + 200\,Kt\, u + 10\,\mu\,Tt\Big)\, y_{2}\\[3mm]
- \mu^{2}(Kt\,u +T)\, y_{1}^{2} +400\,\mu Kt\, uy_{1}+40000(T-Kt\,u) \,=\,0

Nineth, we have:

	The {\em discriminant} {\rm disc}$(e_1,\ldots,e_n)$  of $n$ elements
	$e_1,\ldots,e_n \in L(x,y)$ is defined as:
	\[ \left| \begin{array}{ccc} {\rm Tr}(e_1e_1) & \ldots & {\rm Tr}(e_1e_n) \\
	\vdots & & \vdots \\
	{\rm Tr}(e_ne_1) & \ldots & {\rm Tr}(e_ne_n) \end{array} \right| \]
	where {\rm Tr} stands for the trace map of the extension
	$L(x) \subset L(x,y)$

Tenth, we have:

	\[ \bigcup_{t=1}^{\infty} L(( \ (x-\alpha)^{\frac1t} )) \]
Eleventh, we have:

\[ \nabla h = \frac{\partial h}{\partial x}\nabla x +
              \frac{\partial h}{\partial y}\nabla y +
              \frac{\partial h}{\partial a}\nabla a +
              \frac{\partial h}{\partial b}\nabla b 
 \nabla h & = & \cos(x)y\cdot\left(\! \begin{array}{c} 1 \\ 0
\begin{array}{c} 0 \\ 1 \end{array}\!\right) + 2\,a\,b\cdot\left(\!
\begin{array}{c} \frac{\partial a}{\partial x} \\ 
 \frac{\partial a}{\partial y} \end{array}\!\right) + a^{2}\cdot\left(\!
\begin{array}{c} \frac{\partial b}{\partial x} \\ \frac{\partial b}{\partial y}
& = & \left(\begin{array}{c} \cos(x)y+2\,a\,b\cdot
              \mbox{{\sl da}[1]}+a^{2}\cdot\mbox{{\sl db}[1]} \\
              \sin(x)+2\,a\,b\cdot\mbox{{\sl da}[2]}
               +a^{2}\cdot\mbox{{\sl db}[2]}

Twelfth, we have:

\int_{\frac{1}{2}}^{\pi - e^{\alpha}} \frac{\beta - \gamma}{\frac{n}{k} !}



MAIN PAGE Examples
Subscription Information How To
Macintosh Problems and Corrections Competing Products to TeX2HTML
Unsupported TeX Commands Email Interface for Converting Documents
Recommendation for Presenting Math on the Web Help
Contact Information Technical Support
Web Authoring System Unix SYMBOL Font Installation

This page accessed times since November 22, 1997

TeX2HTML is managed by Robert Curtis and Diane Housken of WebPrimitives, Cambridge, Massachusetts, USA

Artwork by Jim Infantino

TeX2HTML webcasts from a series of Pentium II 266 MHz servers running FreeBSD Unix via a two fast T-3/DS-3 lines from Pittsburgh, Pennsylvania, USA

Making Your Mark
On The World-Wide-Web