基礎數學.自我檢測

函數與反函數(上:代數)

  1. 給定函數 \(y=\displaystyle\frac12x+1\),試以 \(y\) 來求解 \(x\), 得到 \(x=g(y)=\)___________。
        (1) \(2y-1\)     (2) \(2y-2\)     (3) \(\displaystyle\frac12 y+1\)     (4) \(\displaystyle\frac12 y+2\)

  2. 試練習將 \(x=f^{-1}(y)=2y-2\vphantom{\displaystyle\frac12}\) 之變數 \(x\) 和 \(y\) 對調, 改寫成 \(y=f^{-1}(x)=\)_____________。
        (1) \(2x-2\)     (2) \(2x+2\)     (3) \(\displaystyle\frac12 x-2\)     (4) \(\displaystyle\frac12 x+2\)

  3. 令 \(f(x)=6-2x\vphantom{\displaystyle\frac12}\),試寫出它的反函數 \(f^{-1}(x)=\)_____________。
        (1) \(2x-6\)     (2) \(x-3\)     (3) \(\displaystyle\frac12 x-3\)     (4) \(-\displaystyle\frac12 x+3\)

  4. 令 \(x\gt0\),以下何者是 \(f(x)=\displaystyle\frac1x\) 的反函數?
    \(f^{-1}(x)=\)     (1) \(x\)     (2) \(-x\)     (3) \(\displaystyle\frac1x\)     (4) \(-\displaystyle\frac1x\)

  5. 令 \(x\geq0\),以下何者是 \(f(x)=\displaystyle\frac1{x^2+1}\) 的反函數? \(f^{-1}(x)=\)__________
    (1) \(x^2+1\vphantom{\displaystyle\frac12}\)
    (2) \(-\displaystyle\frac1{x^2+1}\)
    (3) \(\displaystyle\sqrt{x^2-1}\vphantom{\displaystyle\sqrt{\frac12}}\),其中 \(-1\le x\le 1\)
    (4) \(\displaystyle\sqrt{\frac{1-x}x}\),其中 \(0\lt x\lt 1\)
[ 回上層 ]


Created: Feb 2, 2021
Last Revised: 2022-11-27
© Copyright 2022 Wei-Chang Shann 單維彰     [Home Page]
shann@math.ncu.edu.tw