基礎數學.自我檢測
函數與反函數(上:代數)
-
給定函數 \(y=\displaystyle\frac12x+1\),試以 \(y\) 來求解 \(x\),
得到 \(x=g(y)=\)___________。
(1) \(2y-1\)
(2) \(2y-2\)
(3) \(\displaystyle\frac12 y+1\)
(4) \(\displaystyle\frac12 y+2\)
-
試練習將 \(x=f^{-1}(y)=2y-2\vphantom{\displaystyle\frac12}\)
之變數 \(x\) 和 \(y\) 對調,
改寫成 \(y=f^{-1}(x)=\)_____________。
(1) \(2x-2\)
(2) \(2x+2\)
(3) \(\displaystyle\frac12 x-2\)
(4) \(\displaystyle\frac12 x+2\)
-
令 \(f(x)=6-2x\vphantom{\displaystyle\frac12}\),試寫出它的反函數 \(f^{-1}(x)=\)_____________。
(1) \(2x-6\)
(2) \(x-3\)
(3) \(\displaystyle\frac12 x-3\)
(4) \(-\displaystyle\frac12 x+3\)
-
令 \(x\gt0\),以下何者是 \(f(x)=\displaystyle\frac1x\) 的反函數?
\(f^{-1}(x)=\) (1) \(x\)
(2) \(-x\)
(3) \(\displaystyle\frac1x\)
(4) \(-\displaystyle\frac1x\)
-
令 \(x\geq0\),以下何者是 \(f(x)=\displaystyle\frac1{x^2+1}\) 的反函數?
\(f^{-1}(x)=\)__________
(1) \(x^2+1\vphantom{\displaystyle\frac12}\)
(2) \(-\displaystyle\frac1{x^2+1}\)
(3) \(\displaystyle\sqrt{x^2-1}\vphantom{\displaystyle\sqrt{\frac12}}\),其中
\(-1\le x\le 1\)
(4) \(\displaystyle\sqrt{\frac{1-x}x}\),其中 \(0\lt x\lt 1\)