next up previous
Next: About this document ... Up: 微積分講義上篇 Previous: 部分分式的理論

積分公式表

  1. $\displaystyle \int x^n\, dx= \frac{1}{n+1} x^{n+1}+C. $
  2. $\displaystyle \int \frac{1}{x}\, dx= \ln \vert x\vert+C. $
  3. $\displaystyle\int e^x\, dx=e^x+C. $
  4. $\displaystyle\int \sin x\, dx=- \cos x +C. $
  5. $\displaystyle\int \cos x\, dx= \sin x +C. $
  6. $\displaystyle\int \sec^2 x\, dx= \tan x +C. $
  7. $\displaystyle\int \csc^2 x\, dx=- \cot x +C. $
  8. $\displaystyle\int \sec x \tan x\, dx= \sec x +C. $
  9. $\displaystyle\int \csc x \cot x\, dx= -\csc x +C. $
  10. $\displaystyle\int \tan x\, dx= \ln \vert \sec x \vert +C. $
  11. $\displaystyle\int \cot x\, dx= \ln \vert \sin x \vert +C. $
  12. $\displaystyle\int \sec x\, dx= \ln \vert \sec x + \tan x \vert +C. $
  13. $\displaystyle\int \csc x\, dx=- \ln \vert \csc x + \cot x \vert +C. $
  14. $\displaystyle \int \frac{dx}{\sqrt{1-x^2}} = \arcsin x +C. $
  15. $\displaystyle \int \frac{dx}{\sqrt{1+x^2}} = \ln \vert x+ \sqrt{1+x^2} \vert+C. $
  16. $\displaystyle \int \frac{dx}{\sqrt{x^2-1}} = \ln \vert x+ \sqrt{x^2-1} \vert+C. $
  17. $\displaystyle \int \frac{dx}{1+x^2} = \arctan x +C. $
  18. $\displaystyle \int \frac{dx}{1-x^2}
= \frac{1}{2} \ln \left \vert \frac{1+x}{1-x} \right \vert+C. $
  19. $\displaystyle\int \sqrt{1-x^2}\, dx = \frac{1}{2} (x \sqrt{1-x^2} + \arcsin x)+C. $
  20. $\displaystyle\int \sqrt{1+x^2}\, dx = \frac{1}{2} [x \sqrt{1+x^2}
+ \ln (x+ \sqrt{1+x^2} )]+C. $
  21. $\displaystyle\int \sqrt{x^2-1}\, dx = \frac{1}{2} (x \sqrt{x^2-1}
- \ln \vert x+ \sqrt{x^2-1} \vert)+C. $
  22. $\displaystyle\int \sin^{n}x\, dx= \left\{\begin{array}{cc}
\displaystyle-\frac{...
...\geq2, \\
\noalign{\smallskip }
-\textup{cos}x+c, & n=1.
\end{array}
\right.$
  23. $\displaystyle \int \textup{cos}^{n}x\, dx= \left\{\begin{array}{cc}
\displaysty...
...n\geq2, \\
\noalign{\smallskip }
\textup{sin}x+c, & n=1.
\end{array}
\right.$
  24. $\displaystyle \int \textup{sin}^{n}x\textup{cos}^{m}x\, dx
=-\frac{\textup{sin...
...os}^{m+1}x}{n+m}
+\frac{n-1}{m+n}\int \textup{sin}^{n-2}x\textup{cos}^{m}x\, dx$ $\displaystyle=\;\frac{\textup{sin}^{n+1}x\textup{cos}^{m-1}x}{n+m}
+\frac{m-1}{m+n}\int \textup{sin}^{n}x\textup{cos}^{m-2}x\, dx.$
  25. $\displaystyle \int \frac{dx}{[(x+\alpha)^2+\beta^2]^n}
=\frac{x+\alpha}{2(n-1)\beta^2[(x+\alpha)^2+\beta^2]^{n-1}}$ $\displaystyle+\;\frac{2n-3}{2(n-1)\beta^2}\cdot\int \frac{dx}{[(x+\alpha)^2+\beta^2]^{n-1}}$



1999-06-28