回顧無窮等比級數的和
現在,將等式兩邊都在 [0, 1) 內做積函數,就是
根據以上公式,對任何正數 t,如果
我們取
則
因此就可以代入公式:
舉例來說,我們看以下的計算結果:
n | t=2 | t=3 | t=4 | t=5 | t=6 |
---|---|---|---|---|---|
10 | 0.6930648562 | 1.0958692095 | 1.3736579214 | 1.5788746667 | 1.7368363533 |
20 | 0.6931471371 | 1.0985858855 | 1.3858911585 | 1.6075458671 | 1.7865681007 |
30 | 0.6931471805 | 1.0986119711 | 1.3862784634 | 1.6092945006 | 1.7911632702 |
40 | 0.6931471806 | 1.0986122844 | 1.3862936717 | 1.6094259965 | 1.7916846298 |
50 | 0.6931471806 | 1.0986122886 | 1.3862943295 | 1.6094368684 | 1.7917495770 |
60 | 0.6931471806 | 1.0986122887 | 1.3862943596 | 1.6094378177 | 1.7917581166 |
70 | 0.6931471806 | 1.0986122887 | 1.3862943610 | 1.6094379036 | 1.7917592798 |
80 | 0.6931471806 | 1.0986122887 | 1.3862943611 | 1.6094379116 | 1.7917594422 |
90 | 0.6931471806 | 1.0986122887 | 1.3862943611 | 1.6094379124 | 1.7917594653 |
100 | 0.6931471806 | 1.0986122887 | 1.3862943611 | 1.6094379124 | 1.7917594687 |
110 | 0.6931471806 | 1.0986122887 | 1.3862943611 | 1.6094379124 | 1.7917594691 |
120 | 0.6931471806 | 1.0986122887 | 1.3862943611 | 1.6094379124 | 1.7917594692 |
這一節的習題,是加深練習對數函數的微分與積分, 並不直接與這一講的內容有關。
Created: Aug 14, 2001
Last Revised: Aug 14, 2001
© Copyright 2001 Wei-Chang Shann 單維彰