¤T¨¤¨ç¼Æªº®õ°Ç®i¶}

Åý§Ú­Ì±q¥¿©¶¨ç¼Æ¶}©l¡C­º¥ý¡A§Ú­ÌÆ[¹î¥¿©¶ªº¾É¨ç¼Æ¦³¡u¥|¬q½ü°j¡vªº©Ê½è¡G

\begin{eqnarray*} f(x) = \sin x &\quad& f(0)=0 \\
f'(x) = \cos x &\quad& f'(0)=... ...(0)=-1 \\
f^{(4)}(x) = \sin x &\quad& f^{(4)}(0)=0 \\
&\vdots&
\end{eqnarray*}
¤]´N¬O»¡¡A¹ï¤@­Ó«D­t¾ã¼Æ n¡A
\begin{displaymath} \frac{d^n}{dx^n} \sin x
= \left\{\begin{array}{ll} \sin x & ...
...\cos x & \mbox{ if } n \equiv 3 \pmod 4 \\ \end{array}\right.
\end{displaymath}
¥i¨£¥¿©¶¨ç¼Æ¬OµL½a¦¸¥i·Lªº¡C ¥N¤J®õ°Ç®i¶}¡A§Ú­Ì´N±o¨ì¥¿©¶¨ç¼Æ¥H 0 ¬°°Ñ¦ÒÂIªº®õ°Ç¯Å¼Æ¡G
\begin{displaymath} \sin x =
x -\frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
=\sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!}
\end{displaymath}
§Ú­Ì¤£¦b¦¹´£¥XÃÒ©ú¡A¥u§i¶D¤j®a¡A¦¹®õ°Ç¯Å¼Æªº¦¬ÀÄ¥b®|¬O $R=\infty$ ¦ý¬O¡A¦]¬°¥¿©¶ªº¶g´Á©Ê¡A§Ú­Ì¨ä¹ê¥uÃö¤ß $[-\pi, \pi]$ ³o­Ó°Ï¶¡¡C®õ°Ç¯Å¼Æ¦b¦¹°Ï¶¡¤¤¦¬Àıo·¥§Ö¡F¤]´N¬O»¡¡A ¥u­n«e­±¤Ö¼Æ´X¶µ©Ò§Î¦¨ªº®õ°Ç¦h¶µ¦¡¡A ´N«Ü¾aªñ¯u¥¿ªº¥¿©¶¨ç¼Æ¤F¡C ¦Ó¦]¬°¥¿©¶ªº¾É¨ç¼Æ´N¬O¾l©¶¡A©Ò¥H¥i¥H»´©ö±o¨ì¾l©¶¨ç¼Æ¥H 0 ¬°°Ñ¦ÒÂIªº®õ°Ç¯Å¼Æ¡G
\begin{displaymath} \cos x = \frac{d}{dx} \sin x
= 1 -\frac{x^2}{2!} + \frac{x^... ...\frac{x^6}{6!} +\cdots
=\sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}
\end{displaymath}
½ÐŪªÌª`·N¡A¥¿©¶¨ç¼Æ¬O©_¨ç¼Æ¡A¥¦ªº®õ°Ç¦h¶µ¦¡¸Ì­±¥þ¬O©_¦¸¶µ¡F ¾l©¶¨ç¼Æ¬O°¸¨ç¼Æ¡A¥¦ªº®õ°Ç¦h¶µ¦¡¸Ì­±¥þ¬O°¸¦¸¶µ¡C ¦Ü¦¹¡A§Ú­Ìª¾¹D¤F¡A­n¦p¦ó¹ï¥ô¦ó¹ê¼Æ x ­pºâ¥¿©¶»P¾l©¶¨ç¼Æªº­È¡C ¨ä¥L¤T¨¤¨ç¼Æ­È¡A³£¥i¥H±q¥¿©¶©M¾l©¶±À¾É¥X¨Ó¡C

¥H¤U¡A§Ú­Ì¦b $[-\pi, \pi]$ µe¥X¥¿©¶»P¾l©¶¥H 0 ¬°°Ñ¦ÒÂIªº®õ°Ç¦h¶µ¦¡¡C ²H¦âªº¦±½u¬O¥¿©¶©Î¾l©¶¦±½u¡C
sin(x) 3 ¶¥ cos(x) 4 ¶¥
   
sin(x) 5 ¶¥ cos(x) 6 ¶¥
   
sin(x) 7 ¶¥ cos(x) 8 ¶¥
   

²{¦b¡A§Ú­Ì§Q¥Î¤G¶µ¯Å¼Æ¥H¤Î¤Ï¾É¨ç¼Æ¡A±À¾É¨â­Ó¤Ï¤T¨¤¨ç¼Æ¥H 0 ¬°°Ñ¦ÒÂIªº®õ°Ç¯Å¼Æ¡C ­º¥ý¡A½Æ²ß

\begin{eqnarray*}
\frac1{\sqrt{1+x}} &=& \sum_{k=0}^\infty {-1/2\choose k} x^k
\... ...1)^k 1\cdot3\cdot5\cdots(2k-1)}{2^k k!}x^k,
\quad \vert x\vert<1
\end{eqnarray*}
¶¶«K©w¸q¤@­Ó·s²Å¸¹¡G
\begin{displaymath} n!! = \left\{\begin{array}{cl}
n(n-2)(n-4)\cdots2 & \mbox{ i... ... an odd integer} \\
1 & \mbox{ if } n=0\\ \end{array}\right.
\end{displaymath}
·N«ä´N¬O©_¼Æªº¥b¶¥­¼ 1*3*5*7*... ©M°¸¼Æªº¥b¶¥­¼ 2*4*6*8*...¡C ¨º»ò¡A¤W­z¤½¦¡¥i¥H²°O¬°
\begin{displaymath}
\frac1{\sqrt{1+x}} = \sum_{k=0}^\infty \frac{(-1)^k (2k-1)!!}{2^k k!}x^k,\quad \vert x\vert<1
\end{displaymath}
±N¦ÛÅܶq¥N¤J -x2¡A±o¨ì
\begin{displaymath} \frac1{\sqrt{1-x^2}}
= \sum_{k=0}^\infty \frac{(-1)^k (2k-1)...
...=0}^\infty \frac{(2k-1)!!}{2^k k!} x^{2k},\quad \vert x\vert<1
\end{displaymath}
¨âÃä³£±q 0 ÂI¶}©l°µ¿n¨ç¼Æ¡A±o¨ì
\begin{displaymath}
\sin^{-1} x = \int_0^x \frac1{\sqrt{1-t^2}}\,dt = \sum_{k=0}...
...\frac{(2k-1)!!}{2^k k!(2k+1)} x^{2k+1},\quad \vert x\vert\leq1
\end{displaymath}
§Ú­Ì¤£¦b¦¹ÃÒ©ú¤F¡A¥u¬O§i¶DŪªÌ¡A¥H¤W®õ°Ç¯Å¼Æªº¦¬ÀÄ¥b®|¬O R = 1¡A¦Ó¥B¥]¬A¨â­ÓºÝÂI¡A©Ò¥H¬O¦b¤º¦¬ÀÄ¡C $x\in [-1,1]$ ¤º¦¬ÀÄ¡C¤Ï¥¿©¶ªº¤E¶¥®õ°Ç¦h¶µ¦¡¬O
\begin{displaymath} \sin^{-1} x
= x + \frac16 x^3 + \frac3{40}x^5 + \frac{5}{112}x^7
+\frac{35}{1152}x^9 + R_{11},\quad \vert x\vert\leq 1
\end{displaymath}
¦]¬° $\cos^{-1}x = \pi/2 - \sin^{-1}x$ ©Ò¥H§Ú­Ì¤£»Ý­n¥t¥~¬°¤Ï¾l©¶»s³y¤@­Ó®õ°Ç®i¶}¡C

¦]¬° $\sin^{-1} 1 = \pi/2$ ©Ò¥H¤Ï¥¿©¶ªº®õ°Ç¯Å¼Æ¡A¶¶«K¬°§Ú­Ì§ä¨ì¤F¤@­Ó­pºâ¶ê©P²v¨ì¤p¼ÆÂI¤U¥ô·N¦h¦ìªº¤èªk¡C ¤]´N¬O

\begin{displaymath} \pi = 2 \sum_{k=0}^\infty \frac{(2k-1)!!}{2^k k!(2k+1)}
\end{displaymath}
¦ý¬O³o­Ó¯Å¼Æ¦¬Àıo»áºC¡A§Ú­Ìµy«á¦A¬Ý¡C

¨ä¦¸¡A¦b½Æ²ßµL½aµ¥¤ñ¯Å¼Æ

\begin{displaymath}
\frac1{1+x} = \sum_{k=0}^\infty (-x)^k,\quad \vert x\vert<1
\end{displaymath}
±N¦ÛÅܶq¥N¤J x2 ±o¨ì
\begin{displaymath}
\frac1{1+x^2} = \sum_{k=0}^\infty (-x^2)^{k},\quad \vert x\vert<1
\end{displaymath}
±Nµ¥¦¡¤§¥ª¥k¨âÃä³£±q 0 ¶}©l°µ¿n¨ç¼Æ¡A´NÀò±o
\begin{displaymath} \tan^{-1}x = \int_0^x \frac1{1+t^2}\,dt
= \sum_{k=0}^\infty \frac{(-1)^k}{2k+1} x^{2k+1},\quad -1<x\leq 1
\end{displaymath}
§Ú­ÌÁÙ¬O¤£¦b¦¹ÃÒ©ú¡A¥u¬O§i¶DŪªÌ¡A¥H¤W®õ°Ç¯Å¼Æªº¦¬ÀÄ¥b®|¬O R = 1 ¦ý¬O¥]¬A¥kºÝÂI¡A¤£¥]¬A¥ªºÝÂI¡C ¤Ï¥¿¤Á¨ç¼Æ¥H 0 ¬°°Ñ¦ÒÂIªº¤E¶¥®õ°Ç¦h¶µ¦¡´N¬O
\begin{displaymath} \tan^{-1}x
= x - \frac{x^3}3 + \frac{x^5}5 - \frac{x^7}7 + \frac{x^9}9 + R_{11}, \quad -1<x\leq1
\end{displaymath}
¦]¬° $\tan^{-1} 1 = \pi/4$ ©Ò¥H
\begin{displaymath}
\pi = 4\times(1-\frac13+\frac15-\frac17+\frac19-\cdots)
\end{displaymath}
³o¤S¬O¤@­Ó­pºâ¶ê©P²v¨ì¤p¼ÆÂI¤U¥ô·N¦h¦ìªº¯Å¼Æ¤½¦¡¡C

¥H¤U¡A§Ú­Ì¦b [-1, 1] ¤ºµe¥X¤Ï¥¿©¶»P¤Ï¥¿¤Á¥H 0 ¬°°Ñ¦ÒÂIªº®õ°Ç¦h¶µ¦¡¡C ²H¦âªº¦±½u¬O­ì¨Óªº¨ç¼Æ¡C
arcsin(x) 1 ¶¥ arctan(x) 1 ¶¥
   
arcsin(x) 3arctan(x) 3 ¶¥
   
arcsin(x) 5 ¶¥ arctan(x) 5 ¶¥
   

¥H¤W¤Ï¥¿©¶»P¤Ï¥¿¤Áªº®õ°Ç¯Å¼Æ¡A³£¥i¥H¥Ñ¥¦­Ìªº¾É¨ç¼Æ¨D±o¡A ¥u¬O¡A±q¤G¶µ¯Å¼Æ¨Ó¿n¤À¡A¤ñ¸û¤è«K¡C ¦Ó¥B¡A³o¬O·íªì¤û¹y©Ò¸g¾úªº¤ß¸ô¾úµ{¡C ¦b¦~»´ªº¤û¹yµo²{³o¨Ç¤½¦¡ªº®É­Ô¡A®õ°ÇÁÙ¨S¥X¥Í¡A ¦Ó¥B¤û¹y¤]¨S¦³µo²{¹³®õ°Ç¯Å¼Æ³o¼Ëªº¤@¯ë©ÊÃö«Y¡C ¥L¬O±q¤G¶µ¯Å¼Æ±o¨ì¤F¤Ï¤T¨¤¨ç¼Æªº¯Å¼Æ­pºâ¤½¦¡¡A ¦A¤Ï¹L¨Ó¨D¸Ñ¥¿©¶¨ç¼Æªº¯Å¼Æ­pºâ¤½¦¡¡C ©Ò¥H¡A¤û¹yÁöµMª¾¹D¥¿©¶»P¾l©¶ªº¯Å¼Æ¡A «o¤£¬O¥Î§Ú­Ì¤µ¤Ñ©Ò»¡±o®õ°Ç®i¶}±o¨ìªº¡C

¦b (1) ©M (2) ³oºØ­pºâ¤½¦¡¥X²{¥H«e¡A ¥@¬É¤W­pºâ¶ê©P²vªº¬ö¿ý«O«ù¤H¬O¤¤°ê«n¥_´Â®É¥Nªº¯ª¨R¤§¡A ¥L­pºâªº¡u±K²v¡v¬O 355/113¡A¦X¤p¼Æ¤j¬ù 3.14159292¡A ·Ç½T¨ì¤p¼ÆÂI¤U²Ä¤»¦ì¡C ³o­Ó¼Æ¾Ú«O«ù¥@¬É°O¿ý¤j¬ù 1000 ¦~¡C ¤@¥¹¹³ (1) ©M (2) ³oºØ¤½¦¡¥X²{¤F¡A¥ô¦ó¤H¥u­n§V¤O¥hºâ¡A ´N¯à¯}³o­Ó¬ö¿ý¡C ¦ý¬O¡A³o¨â­Ó¤½¦¡³£¦¬Àıo¤£ºâ§Ö¡A¦Ó (2) ¤£¦ý¤ñ (1) §Ö¡A¦Ó¥B«¬¦¡¦n¬Ý¡A ©Ò¥H¥¦¬O³ÌµÛ¦Wªº¶ê©P²v­pºâ¤½¦¡¡C ¨Æ¹ê¤W¡A¤½¦¡ (2) ¦b¤û¹y¤§«e´N³Qµo²{¤F¡A ¥u¬O¨º®É­Ô­nªá¦n¤@µf¥\¤Ò¤~¿ì±o¨ì¡A ¦Ó²{¦b³z¹L¤Ï¥¿¤Á¨ç¼Æ¡A«Ü¤è«K´N¥i¥HÁA¸Ñ¤F¡C ¥H¤U¡A§Ú­Ì¦C¥X (1) ©M (2) ­pºâ¶ê©P²vªº¼Æ­Èµ²ªG¡C
n \begin{displaymath} 4\times\sum_{k=0}^n \frac{(-1)^k}{2k+1} \end{displaymath} \begin{displaymath} 2\times\sum_{k=0}^n \frac{(2k-1)!!}{2^k k!(2k+1)} \end{displaymath}
10 3.23231580942.8001699635
100 3.15149340113.0292687383
1000 3.14259165433.1059265157
104 3.14169264363.1303093791
105 3.14160265353.1380244217
106 3.14159365363.1404642749
107 3.14159275363.1412358288
ŪªÌ¥i¥H¬Ý¨ì (2) ¦¡¦¬Àĸû§Ö¡A¦ý¬O§Y¨Ï¦p¦¹¡AÁÙ¬O­n­pºâ¤@¤d¸U¦¸¡A ¤~¯à¨ì¹F¯ª¨R¤§ªº¤ô·Ç¡C ¥t¥~¦³³\³\¦h¦h¤ñ (2) ÁÙ­n§Öªº­pºâ¶ê©P²v¯Å¼Æ¤½¦¡¡A §Ú­Ì´N¤£¦b³o¸Ì»¡¤F¡C

²ßÃD

  1. ½Ð±À¾É¥X ªº¤@¯ë¶µ¤½¦¡ (k ¬O¥¿¾ã¼Æ)¡C
  2. ÃÒ©ú


  3. ½Ð°Ý (½m²ß¯Å¼Æ¾Þ§@¡A¤£­n¥Îù¥²¹Fªk«h)


  4. ½Ð°Ý (½m²ß¯Å¼Æ¾Þ§@¡A¤£­n¥Îù¥²¹Fªk«h)


  5. ½Ð°Ý (½m²ß¯Å¼Æ¾Þ§@¡A¤£­n¥Îù¥²¹Fªk«h)


  6. ½Ð°Ý (½m²ß¯Å¼Æ¾Þ§@¡A¤£­n¥Îù¥²¹Fªk«h)


  7. ½Ð±À¾É


    ¥H 0 ¬°°Ñ¦ÒÂIªº®õ°Ç¯Å¼Æ¡C
  8. ½Ð±À¾É


    ¥H 0 ¬°°Ñ¦ÒÂIªº®õ°Ç¯Å¼Æ¡C
  9. ½Ð±À¾É


    ¥H 0 ¬°°Ñ¦ÒÂIªº¤G¶¥®õ°Ç¯Å¼Æ¡C
  10. ½Ð±À¾É


    ¥H 0 ¬°°Ñ¦ÒÂIªº¤G¶¥®õ°Ç¯Å¼Æ¡C

Created: Aug 17, 2001
Last Revised: Aug 17, 2001
© Copyright 2001 Wei-Chang Shann ³æºû¹ü