Regular Mode Selected.



Lecture 26


傳統的應用數學, 指的是將數學應用在物理方面. 其實這也是牛頓, 歐拉這些早期的人物所專注的問題. 這一類問題導引出來的數學問題大致上是微分方答漕D解問題. 高斯導出的最小平方差方法, 在今天可以用來處理統計和經濟學上方面的問題. 但是當初他發明這套方法的目的是為了推測一個天文學上的眸H. 基本上可以說, 二十世紀前的應用數學都在處理自然科學的問題. 在二十世紀的中段, 大致上就是二次大戰之後, 統計學與計算機科學的快速發展, 帶動了像數學規劃, 離散數學與圖論這些數學分支的發展. 進而也將數學的觸角伸入了社會科學的領域. 而電子計算機的應用, 自然產生了離散的, 數位化的新資料形態. 可以說, 數位化的聲音與影像, 是最近三十  發生的. 針對這些新的資料形態產生了新的問題, 需要新的方法. 這一門新的學問, 統稱為訊號處理 (signal processing). 而這門科學的核心物件之一, 就是傅立葉1侖同期的法國人, 曾經是拿祠琲滷s用科學家, 隨軍遠征埃及, 並對古埃及文化的研究有所貢獻. 他所發掘的一件著名契形文字泥版, Rosetta stone, 在他被英國海軍俘虜的時候給沒收了, 畢b展示於大英博物館. 他的穩定的科學家生活始於拿祠痝Q流放南大西洋的小島 (1814). 但是他在 1807 就已經提到過這一類的級數.級數. 也就是說, 應用數學的領域, 從三百 前的物理力學, 漸漸地擴大, 到今天還包含了訊號處理.

所謂傅立葉級數 (Fourier series) 是指

a0 +

n = 1 
an cosnx + bn sinnx      (1)
這樣的級數. 如果只取部分和, 則稱為三角多項式 (trigonometric polynomial). 其中 ak, bk 都是實數, 稱為傅立葉係數 (Fourier coefficients). 它首次出痔騧琠 (Euler) 的一個等式

x
2
= sinx - 1
2
sin2x + 1
3
sin3x - ,    x (-p, p).
但是數學史上並沒有以歐拉來命名這一類的級數. 這或許是因為傅立葉發眾o類級數的原因具有比較深的數學影響.

由所謂的歐拉公式

eiq = cosq+ isinq,
我們可以改寫

cosnx = einx + e-inx
2
,   sinnx = einx - e-inx
2
.
所以, 傅立葉級數 (1) 又可以寫成



n = - 
cn einx.
這時 x 是實數, 而 cn 是複數.

泰勒級數和傅立葉級數都是把一個函數拆成無窮多項的方法. 這些無窮多項的低次項總是比較重要而高次項越來越小, 可能省略了也不會造成太大的 差. 泰勒級數把函數分解成以某個點為中心的多項式, 傅立葉級數把函數分解成不同的頻率波段. 泰勒級數通常只在某個點的附近逼近函數, 傅立葉級數通常只在某個區間內平均地逼近函數. 泰勒級數的極限函數 (如果存在的話), 一定等於原函數, 傅立葉級數的極限函數, 不見得在每個點都等於原函數.



課本 10.6 傅立葉級數


從 (1) 式可以看出, 傅立葉級數必定是一個 2p 周期函數. 通常我們只看它在 [-p, p] 之間的圖形. 如果我們所要處理的函數 f(x) 不是個 2p 周期函數, 通常我們先決定要處理哪個區段, 比如說 [a,b], 然後將之平移拉縮到 [-p, p], 再將它周期化, 然後取其傅立葉係數. 求傅立葉係數的方法, 列在課本 637 頁. 所謂的周期化, 就是把函數在 [-p, p] 的圖形, 分片抄到 [-3p, -p], [p, 3p], 這些區間去. 也就是硬把它變成 2p 周期函數. 除非原函數 f(a) = f(b), 否則被周期化之後的函數是不連續的.

例如, 令

f(x) =





1
4
- |x|
if |x| < 1
4
,
0
otherwise
    x [-p, p],     (2)
然後拓展 f(x) 成 2p 週期函數. 可見 f(x) 是一個偶函數, 所以 bn 都是零. 計算 a0 = [1/( 32p)], a1 到 a16 的值分別如下

0.0099   0.0097   0.0095   0.0091   0.0087   0.0082   0.0077   0.0070
0.0064   0.0057   0.0051   0.0044   0.0038   0.0031   0.0026   0.0021
此部分和的圖形顯示在圖五十五.

Figure


 
 
 

Error Report

TeX2HTML has a restricted set of TeX commands that it understands, mainly dealing with specific styles and layout (dimension-specific) commands.

Below is a listing of the TeX commands that TeX2HTML found and ignored. This does not mean that TeX2HTML is malfunctioning! We include this information for you to see exactly what TeX2HTML is ignoring.

As you see from the output above, TeX2HTML is converting most, if not all, of the mathematical expressions and hard TeX.

For special symbols not supported via the SYMBOL font (e.g. Blackboard Bold), TeX2HTML leaves the TeX commands in place for you to decide how you want to deal with them. (A global search/replace to turn \Bbb R into R possibly).

We expect that you, the author, will want to format the HTML paper in a simpler format than that of TeX, since HTML cannot keep up with all TeX layout commands.

Including LaTeX commands
Fraction level 3
No auxiliary LaTeX file found: .aux
Input file epsf.tex not found
**** Unknown command \mr, (2 user-defined)
**** Error! Negative closure count, line:105

Account Name: Wei-Zhang Shan
Account Email: shann@libai.math.ncu.edu.tw
Account Expires On: Jul 14, 1998

Main File

(NOT an URL; Click BROWSE and NAVIGATE to
your file on your local harddrive)


Input Files
(if any)



Input Files would be \input
in regular TeX. Babel is supported -
put your
.bab file into one of
these auxilliary slots.

LaTeX AUX File

O P T I O N S

Fraction Depth:
Omit Header/Footer TeX2HTML Material
Chatty Verbose Error Report Mode
Force LaTeX Macros
Force AMS Macros
DO NOT Guess HTML Equivalent Font Definitions
Use Italics in Math Font
Disable Delimited Definitions
Webserver-Clean Version for Macs:
Convert to RAW File For Later Upload To Your Webserver

Help...



R O A D M A P

MAIN PAGE Examples
Subscription Information How To
Macintosh Problems and Corrections Competing Products to TeX2HTML
Unsupported TeX Commands Email Interface for Converting Documents
Recommendation for Presenting Math on the Web Help
Contact Information Technical Support
Web Authoring System Unix SYMBOL Font Installation

 
PURCHASE TeX2HTML



This page accessed times since November 22, 1997


TeX2HTML is managed by Robert Curtis and Diane Housken of WebPrimitives, Cambridge, Massachusetts, USA

Artwork by Jim Infantino

TeX2HTML webcasts from a series of Pentium II 266 MHz servers running FreeBSD Unix via a two fast T-3/DS-3 lines from Pittsburgh, Pennsylvania, USA


WebPrimitives
Making Your Mark
On The World-Wide-Web