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Abstract Granger causality (GC) analysis has emerged
as a powerful analytical method for estimating the causal
relationship among various types of neural activity data.
However, two problems remain not very clear and further
researches are needed: (1) The GC measure is designed
to be nonnegative in its original form, lacking of the trait
for differentiating the effects of excitations and inhibi-
tions between neurons. (2) How is the estimated causality
related to the underlying synaptic weights? Based on the
GC, we propose a computational algorithm under a best lin-
ear predictor assumption for analyzing neuronal networks
by estimating the synaptic weights among them. Under this
assumption, the GC analysis can be extended to measure
both excitatory and inhibitory effects between neurons. The
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method was examined by three sorts of simulated networks:
those with linear, almost linear, and nonlinear network
structures. The method was also illustrated to analyze real
spike train data from the anterior cingulate cortex (ACC)
and the striatum (STR). The results showed, under the quin-
pirole administration, the significant existence of excitatory
effects inside the ACC, excitatory effects from the ACC to
the STR, and inhibitory effects inside the STR.

Keywords Granger causality analysis · Synaptic weights
estimation · Vector autoregressive model · Neuronal
networks

1 Introduction

Granger causality (GC) (Granger 1969, 1980) has been
shown to be an effective method for analyzing the causal
relationship between continuous-valued neural activity data
(Baccala and Sameshima 2001; Dhamala et al. 2008;
Cadotte et al. 2010; Bressler and Seth 2011) and has
been widely deployed in recent neuroscience research.
To further understand how neurons cooperate to gener-
ate specific brain functions, several extended GC methods
were also proposed for identifying directional interactions
between neurons through multiple spike trains (Sameshima
and Baccala 1999; Nedungadi et al. 2009; Krumin and
Shoham 2010; Kim et al. 2011; Zhou et al. 2014). Being the
fundamental knowledge used in this paper, the time domain
GC analysis will be briefly introduced in the next section
and the readers are referred to an article by Barnett and Seth
Barnett and Seth (2014) for more details.

The term synaptic weight is widely used in neural net-
work research and typically refer to the coupling strength
of a connection between two nodes in the network. A large
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synaptic weight usually means that a large signal (i.e., high-
frequency spikes) from the pre-synaptic neuron can result in
a large signal of the post-synaptic one. Therefore, in neuro-
science and biology, it can also be interpreted as the amount
of influence of one neuron has on the firing activity of
another.

The spikes of a pre-synaptic neuron are carried by the
axon, which will release excitatory or inhibitory neuro-
transmitter into the synapse. When the post-synaptic neuron
receives the neurotransmitter, an excitatory post-synaptic
potential (EPSP) or an inhibitory post-synaptic potential
(IPSP) is then induced to temporarily depolarize or hyperpo-
larize the membrane potential. An EPSP makes the neuron
more likely to generate an action potential (AP), while an
IPSP makes the neuron to do the opposite. However, a sin-
gle EPSP is not sufficient for the membrane to generate
an AP, temporal or spatial summations are required. This
means that the firing pattern of the post-synaptic neuron
is generally not a direct consequence of the influence of
a single pre-synaptic neuron; but a weighted result of the
effects of several pre-synaptic neurons with possibly dif-
ferent synaptic weights. Furthermore, IPSPs will diminish
EPSPs, playing a much more crucial role of determin-
ing whether or not an AP generation will occur at the
post-synaptic membrane.

The GC analysis has emerged as a powerful analytical
method for estimating the causal strength of complex net-
works (Seth 2005; Seth and Edelman 2007). However, the
effects of excitations and inhibitions could not be differen-
tiated in its original form. Based on the GC, we propose
a computational algorithm (presented in Section 2.3) under
the assumption of best linear predictor (BLP) for analyz-
ing neuronal networks by estimating the synaptic weights
among them. The idea of the mathematical assumption BLP
is that the weighted voltage-fluctuation of the pre-synaptic
neurons should be the best linear explanation for the
voltage-fluctuation of the post-synaptic neuron among the
network. Using this interpretation, the GC analysis can be
extended to measure both excitatory and inhibitory effects
between neurons without too much extra computational
complexity. The appropriateness of the BLP assumption
was examined by three sorts of simulated networks: those
with linear, almost linear, and nonlinear network structures.
To illustrate the application of the proposed method, real
spike trains from the anterior cingulate cortex (ACC) and
the striatum (STR) were analyzed.

It is worth noting that spike trains are non-equally spaced
data and are regarded as being from a point process. Filter-
ing is usually required for converting them to equally spaced
time series for further GC analyses (Sameshima and Baccala
1999). This study adopted the Gaussian kernel filtering or
binning (depending on the situation) to convert spike trains
into time series data for the following three main reasons:

(1) it reduces the complexity of analysis, and considers also
the effect of temporal summation of action potentials, (2)
under suitable preprocessing, even short, sparse spike trains
can be converted, so that the standard autoregression mod-
eling can be applied (Zhu et al. 2003), (3) most important
of all, spike trains can be filtered to form close approxi-
mations to the firing rates or the voltage-fluctuations of the
underlying neurons (Lehky 2010).

The rest of this paper is organized as follows. In
Section 2, we briefly introduce the so-called Granger
causality index, and then extend it to measure both exci-
tatory and inhibitory effects between network nodes by
using the BLP assumption. Section 3 presents three network
models to ensure the appropriateness of the proposed algo-
rithm. In Section 4, we apply the algorithm to analyze real
spike train data. Section 5 provides some discussion about
the results obtained from Section 3–4, shortcomings of the
method, and related future works.

2 Modeling and analysis

Based on the framework of Granger causality analysis and a
BLP interpretation of synaptic weights, we propose a proce-
dure for weights estimation and define a synaptic measure
between neuronal time series using the estimated weights.

2.1 An introduction to the GC

Let X = (x1, x2, · · · , xn) be a stationary n-dimensional
time series process with zero mean. The p-th order linear
autoregressive model for X is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
t =

p∑

r=1
a
1,1
r x1

t−r + · · · +
p∑

r=1
a
1,n
r xn

t−r + ε1t

x2
t =

p∑

r=1
a
2,1
r x1

t−r + · · · +
p∑

r=1
a
2,n
r xn

t−r + ε2t

...

xn
t =

p∑

r=1
a

n,1
r x1

t−r + · · · +
p∑

r=1
a

n,n
r xn

t−r + εn
t ,

(1)

where a
i,j
r is the projection coefficient from the i-th time

series onto the j -th time series at time lag r , represent-
ing the coupling strength from node j to node i in the
network. The residuals ε1, ε2, · · · , εn are zero-mean uncor-
related white noises with covariance matrix�. The diagonal
entries {�ii = V ar(εi), i = 1, · · · , n} measure the accu-
racy of the autoregressive prediction to each node based on
the information from time stamps t − 1 to t − p.

To see whether the information contained in time series
xj is useful in explaining the state of time series xi , namely,
the importance of node j to node i, we can exclude the
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time series variable xj from Eq. (1) to obtain a reduced1

(n − 1)-dimensional autoregressive model with residual
series ηi,j of xi and corresponding prediction error �

j
ii =

V ar(ηi,j ). Here �
j
ii measures the accuracy of the predic-

tion of xi based only on the previous values in time series
{x1, · · · , xj−1, xj+1, · · · , xn}. If �ii in Eq. (1) is signifi-
cantly less than �

j
ii in the reduced model in some suitable

statistical sense, then we say that xj Granger-cause xi . This
causality can be quantified by the GC index from xj to xi

formulated as:

Fj→i = ln
�

j
ii

�ii

. (2)

It is clear that Fj→i = 0 when �
j
ii = �ii , i.e., xj has

no causal influence on xi , and Fj→i > 0 when xj Granger-
cause xi . Notice that Fj→i is defined only for j �= i and

is always nonnegative, i.e., �ii is bounded above by �
j
ii ,

since the full model defined in Eq. (1) should fit the data
better than the reduced model. Finally, we note that the GC
index Eq. (2) is significant if the corresponding coefficients
a

i,j
r are jointly significantly different from zero. This can

be assessed via an F -test on the null hypothesis that a
i,j
r

are zero (Greene 2002; Seth 2010). The projection coef-
ficients a

i,j
r and prediction errors �ii can be obtained by

solving the Yule-Walker equation (Kitagawa 2010) and an
efficient model order can be determined using the Akaike
Information Criterion (AIC):

AIC(p) = 2 log(det(�)) + 2n2p

T
, (3)

where T is the total length of the time series. More infor-
mation about the GC can be found in the author’s previous
work (Shao et al. 2013) and also Ding et al. (2006), Cadotte
et al. (2010), and Barnett and Seth (2014).

2.2 Synaptic weights estimation

Now, consider the multivariate zero-mean time series, X =
(x1, x2, · · · , xn), consisting of the trajectories of mem-
brane voltage of n distinct neurons. Suppose that the i-th
neuron is triggered by some other k neurons in the net-
work, say {i1, i2, · · · , ik}-th neurons, with synaptic weights
{αi

1, α
i
2, · · · , αi

k}. For convenience, we assume that 1 ≤
k := k(i) ≤ n − 1. The case k = 0 means that the i-th
neuron is not triggered by others, thus is relatively easy to
deal with. The weights are assumed to be nonzero, if some
αi

s is zero, then we can just remove the corresponding index

1The i−th equation of the reduced model reads xi
t =

p∑

r=1
b

i,1
r x1

t−r +

· · ·+
p∑

r=1
b

i,j−1
r x

j−1
t−r +

p∑

r=1
b

i,j+1
r x

j+1
t−r +· · ·+

p∑

r=1
b

i,n
r xn

t−r +ηi,j, where

the b’s are the corresponding projection coefficients.

is from the trigger set. Positive and negative weights repre-
sent excitatory and inhibitory influences on the i-th neuron,
respectively.

In general, the trigger set Ii := {i1, i2, · · · , ik} and the
corresponding weights αi := {αi

1, α
i
2, · · · , αi

k} in the net-
work can not be identified and estimated easily due to the
underlying complex dynamics. However, under the assump-
tion of the best linear predictor (BLP) (Definition 1 below),
Ii and αi can be approximated effectively. The results are
described in the following proposition.

Definition 1 Let x and y be two stationary time series
with zero-means. Then we say that y forms the best
linear predictor (BLP) of x among a variable set G if
σ 2(x|x̄, ȳ) < σ 2(x|x̄, z̄), ∀z ∈ G, where σ 2(x|x̄, ȳ) :=
minp,{fr },{dr }E{xt − ∑p

r=1[fryt−r + drxt−r ]}2.

Proposition 1 In the situation described above, if fur-
ther the weighted trajectory ui := αi

1x
i1 + αi

2x
i2 +

· · · + αi
kx

ik , made by the trigger set and the correspond-
ing weights, forms the BLP to the trajectory of the i-
th neuron (namely, xi) among the whole network; then
based on the GC framework, Ii can be completely iden-
tified and the estimate of αi can be obtained as α̂i :={∑p

r=1a
i,i1
r ,

∑p

r=1a
i,i2
r , · · · ,

∑p

r=1a
i,ik
r

}
up to a scale fac-

tor.

Proof Let ui := αi
1x

i1 + · · · + αi
kx

ik form the BLP of xi ,
then there exist a positive integer p and projection coeffi-
cients {f i

r , r = 1, 2, · · · , p}, {di
r , r = 1, 2, · · · , p} such

that xi
t = ∑p

r=1[f i
r ui

t−r +di
rx

i
t−r ]+εi

t , where εi is a station-
ary white noise possessing the smallest variance among the
whole network. Replacing ui with the weighted trajectory,
we obtain

xi
t =

p∑

r=1

[
f i

r ui
t−r + di

rx
i
t−r

]
+ εi

t

=
p∑

r=1

[
f i

r

(
αi
1x

i1
t−r + · · · + αi

kx
ik
t−r

)
+ di

rx
i
t−r

]
+ εi

t

=
p∑

r=1

[
αi
1f

i
r x

i1
t−r + · · · + αi

kf
i
r x

ik
t−r + di

rx
i
t−r

]
+ εi

t , (4)

which represents the underlying but unknown network
structure of {xi, xi1, xi2, · · · , xik }. On the other hand, fitting
to data the same equation as the i-th equation in Eq. (1), we
have the following empirical regression (compared to the
theoretical regression Eq. (4))

xi
t =

p∑

r=1

[
ai,1
r x1

t−r + · · · + ai,n
r xn

t−r

]
+ ε̃i

t . (5)
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Let Īi := {1, 2, · · · , i − 1, i + 1, · · · , n} − Ii be the com-

plement of the trigger set Ii . We note that ε̃i
t ≡ εi

t if a
i,s
r =

0, ∀r = 1, · · · , p and s ∈ Īi ; otherwise ε̃i and εi are

totally different but with V ar(ε̃i
t ) = V ar(εi

t ) since Eq. (4)
has the smallest residual variance among the whole network
and Eq. (5) has more degree of freedom (coefficients) than
Eq. (4).

If the trajectories of the Īi-th neurons are stochastically
independent of both the i-th and Ii-th neurons, then we have
a

i,s
r = 0, for r = 1, · · · , p and s ∈ Īi . Comparing Eq. (5)

with Eq. (4), we then have

p∑

r=1

ai,i1
r = αi

1

p∑

r=1

f i
r , · · · ,

p∑

r=1

ai,ik
r = αi

k

p∑

r=1

f i
r . (6)

Since the projection coefficients in Eq. (5) can be obtained
by solving the Yule-Walker equation or simply by the least-
squares method, Eq. (6) immediately leads to

αi
1

p∑

r=1
a

i,i1
r

= αi
2

p∑

r=1
a

i,i2
r

= · · · = αi
k

p∑

r=1
a

i,ik
r

, (7)

provided
p∑

r=1
f i

r �= 0. For αi
s and

p∑

r=1
a

i,is
r to have the same

sign for s = 1, 2, · · · , k, we can, without loss of generality,

assume that
p∑

r=1
f i

r > 0. If
p∑

r=1
f i

r < 0, then −ui is used to

replace ui .
If some of the trajectories of the Īi-th neurons are linearly

dependent of the i-th or Ii-th neurons, then a
i,s
r �= 0, for

some r ∈ {1, · · · , p}, s ∈ Īi and the projection coefficients
in Eq. (5) are thus affected, resulting in a biased estima-
tion of Eq. (7). However, this predicament can be solved
by virtue of the assumption of BLP and the concept of GC.
Since the εi in Eq. (4) has the smallest variance among the
whole network, taking out any element of {xs : s ∈ Īi}
from the regression Eq. (5) does not increase the variance of
ε̃i . According to the concept in Eq. (2), we can correct the
model coefficients by ruling out all the useless information
of the Īi-th neurons.

We end this subsection by the following remarks.

Remark 1 The idea behind the BLP mathematical assump-
tion is that the weighted voltage-trajectory of the trig-
ger neurons should be the best linear explanation for the
voltage-trajectory of the target neuron among the whole net-
work. Based on this interpretation, the GC index can be
extended to measure both excitatory and inhibitory effects
in virtue of the estimated synaptic weights.

Remark 2 The synaptic weight αi
s and the summation of the

projection coefficients
p∑

r=1
a

i,is
r are forced to have the same

sign for s = 1, 2, · · · , k, because positive and negative
p∑

r=1
a

i,is
r refer to positive and negative correlations between

xi and xis , respectively.

Remark 3 The case k = 0 means that the i-th neuron
is not triggered by other neurons in the network, there-
fore Fj→i = 0, ∀j and there is no synaptic weights to be
estimated.

Remark 4 For readers dealing with sparse networks, L1
regularization (or LASSO) would be an useful technique
for fitting to data a sparse regression to avoid overfitting
and the problem of multiple testing (Arnold et al. 2007;
Michailidis and d’Alche-Buc 2013). In this scenario, a com-
putational much more efficient approach would be first
running LASSO to learn the network structure and then
using GC to get the causal strength.

Remark 5 Some arguments in the proof such as the stochas-
tic independence and the estimations of projection coeffi-
cients assume that the law of large numbers (LLN) holds.
In the case of small samples or limited data, estimation
errors come into exsitence thus some statistical inferences
in the proof may fail. However, the proof holds for most
large-sample cases.

2.3 The algorithm

Here, we present a step by step algorithm for computing the
proposed index (named neuron synaptic index, NSI) from
multiple spike train data.

Step 1 Properly smooth the spike train data by kernel fil-
tering (Gaussian kernels are commonly used) to
acquire the approximate membrane voltage tra-
jectories to the underlying voltage evolution of
the neurons in the network.

Step 2 Subtract the mean value from each trajectory to
form zero-mean time series and then fit the vec-
tor autoregressive model in Eq. (1). Appropriate
model order can be obtained beforehand by using
AIC in Eq. (3).

Step 3 Compute all the GC indices by Eq. (2) for all
pairs of neurons, i.e., i, j = 1, 2, · · · , n with i �=
j and also perform F -tests to ensure statistical
significance.

Step 4 For each node i = 1, 2, · · · , n, refine the autore-
gressive model by ruling out the information
about the Īi-th neurons, i.e., the neurons with
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insignificant Fj→i , to correct the projection coef-
ficients.

Step 5 For each node, compute the synaptic weights of
the trigger neurons by simply summing the pro-
jection coefficients up to the model order p as
shown in Eq. (7).

Step 6 For each node, take the weighted trajectory as a
new explanatory time series and then compute the
GC index from this weighted time series to that
of the node.

Step 7 Finally, the NSI is then defined to be the l1-
normalized2 estimated weights obtained in Step 5
multiplying the GC index obtained in Step 6 (see
Eq. (A.5) in Appendix).

3 Simulation study

Here, three sorts of network models are simulated to inves-
tigate the proposed algorithm: the linear, almost-linear, and
nonlinear networks. The linear network, derived directly
from autoregressive framework, examines the validity of the
synaptic weights estimation in Proposition 1. Additionally,
the almost-linear and nonlinear networks, derived both from
integrate-and-fire (IF) neuron models, examine the appro-
priateness of the BLP assumption in Remark 1 through the
reflected subthreshold dynamics of the models. The Mat-
lab code used for this study is available to interested readers
upon request.

Significance tests on the GC indices should be corrected
for multiple testing and we adopted the approach of False
Discovery Rate (FDR) (Benjamini and Hochberg 1995)
which has greater statistical power than the conservative
Bonferroni correction. In this and next sections, significant
Granger causality interaction between input neurons and
output neurons are calculated using an F -test corrected by
FDR for multiple comparison with confidence threshold at
P − value = 0.05 (i.e., 95 % significance level).

3.1 Linear network

A linear network, depicted in Fig. 1, is presented here.
The time series variable w serves as the trajectory of post-
synaptic neuron, while x, y, and z serve as the trajectories
of pre-synaptic neurons with synaptic weights α, β, and γ ,
respectively. For readers not familiar with the multivariate
settings in Section 2, a much clear-cut derivation of the NSI
using this simple network is given in Appendix.

2This means that the estimated weight vector α̂i = (α̂i1 , α̂i2 , · · · , α̂ik )

is normalized by its l1 norm ‖α̂i‖1 := |α̂i1 | + |α̂i2 | + · · · + |α̂ik |. Then
the normalized weight vector α̂i/‖α̂i‖1 will have unit l1 vector norm.

Fig. 1 A simple linear network. Red circles represent excitation and
green squares represent inhibition. Variable w serves as the trajectory
of post-synaptic neuron, variables x, y, and z serve as the trajectories
of pre-synaptic neurons with synaptic weights α > 0, β > 0, and
γ < 0, respectively. v1, v2, and v3 are collateral variables, consisting
of source, target, and independent nodes. A much clear-cut derivation
of the NSI using this simple network is given in Appendix

Trajectories are generated by the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1,t = ε1,t
xt = g1v1,t−1 + g2v1,t−2 + g3v1,t−3 + ε2,t
v2,t = h1xt−1 + h2xt−2 + h3xt−3 + ε3,t
yt = ε4,t
zt = ε5,t
ut = αxt + βyt + γ zt

wt = f1u1,t−1 + f2u1,t−2 + f3u1,t−3 + d1w1,t−1

+d2w1,t−2 + d3w1,t−3 + ε6,t
v3,t = ε7,t

(8)

where εk ∼iid N (0, 1), k = 1, · · · , 7 are zero-mean
uncorrelated Guassian white noises.

Settings of the simulation are: [g1, g2, g3] =
[0.4, 0.2, 0.1], [h1, h2, h3] = [0.1, 0.2, 0.4], [f1, f2, f3] =
[0.5, 0.3, 0.1], and [d1, d2, d3] = [0.1, 0.3, 0.5]. Variable x

is triggered by v1 and variable v2 is triggered by x. Vari-
able v3 serves as an independent node in the network. The
length of each trajectory is 1000. We note that the above
coefficients can be replaced by any stable coefficients and
the simulation results shown below will remain unaffected.
The stability condition (Lutkepohl 2005) ensures Eq. (8)
to generate stationary processes. There have been many
convincing examples published (Baccala and Sameshima
2001; Zou et al. 2010) showing that the GC framework
is a well-established method for identifying the causal
relationship among stationary time series. If some unstable
coefficients are used instead, the generated time series will
be nonstationary, then some signal preprocessing technique
(e.g, differencing) will be needed to convert nonstationary
processes to stationary processes. More details can be found
in Barnett and Seth (2014).
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For [α, β, γ ] = [1.0, 0.5, −0.5], averaging from 100
repeated simulations gives: the synaptic weights esti-
mates [α̂, β̂, γ̂ ] = [0.9012, 0.4549, −0.4539], the weighted
GC index F

α̂x+β̂y+γ̂ z→w
= 0.4515, the normalized

weights [1.0000, 0.5064, −0.5053] (divided by |α̂| instead
of |α̂| + |β̂| + |γ̂ | defined in Eq. (A.5) for easy com-
parison with the underlying weights), and the NSIs
[Nx→w, Ny→w, Nz→w] = [0.4515, 0.2286, −0.2281] with
standard deviations [0.0359, 0.0396, 0.0347]. Notice that
no knowledge of the parameters for generating the data
was used in the estimation procedure, only the generated
trajectories were used.

The results show that the normalized weight estimates
[1.0000, 0.5064, −0.5053] are consistent with the under-
lying weights [1.0, 0.5, −0.5], and the collateral variables
v1, v2, and v3 do not affect the estimation since Fv1→w,
Fv2→w, and Fv3→w are all zero, thus these information can
be ruled out directly by the GC analysis. The NSI Eq. (A.5)
unites the estimated synaptic weights and the weighted
GC index. A positive (negative) value represents excitatory
(inhibitory) synaptic connection and it’s magnitude at the
same time reflects the degree of synaptic influence.

3.2 Almost-linear network

To illustrate the synaptic weights estimation in a neural
spiking context, a simple feedforward IF neuron network
was simulated (depicted in Fig. 2). Briefly, Neurons #2 −
5 were modeled by independent Poisson processes with

Fig. 2 A simple feedforward integrate-and-fire neuron network. Red
circles represent excitation and green squares represent inhibition.
Neurons #2 − 5 are modeled by independent Poisson processes with
firing rate λ. Neurons #8, 9 were modeled as single strong inputs by
independent Poisson processes with firing rate 1.5λ. Neuron #7 is
implemented by a direct discrete time summation of the synaptic inputs
α1, · · · , α6(mV ). Neurons #1, 6 are implemented in the same way that
Neuron #7 is done with synaptic inputs 30 (mV ) from Neurons #8, 9
respectively. Neurons #10, 11 are modeled as independent nodes by
independent Poisson processes with firing rate λ. Neurons #5, 6 are
inhibitory, i.e., α5, α6 < 0

firing rate λ. Neurons #8, 9 were modeled as single strong
inputs by independent Poisson processes with firing rate
1.5λ. Neuron #7 was implemented by a direct discrete time
summation of the synaptic inputs αi (mV ), i = 1, · · · , 6
(i.e., the weighted outputs of Neurons #1 − 6 after some
propagation delay), leading to its internal potential that was
reset to Vreset = −80 (mV ) and produced a spike when
the threshold value Vth = −55 (mV ) was reached. Dur-
ing the refractory period, the potential will linearly recover
from Vreset to the resting potential Vrest = −70 (mV ).
Time resolution was set to be 1 ms and there was a 2 mV

decrease/increase of the potential to the Vrest every unit time
depending on the status of de/hyper -polarizations, respec-
tively to model the diffusion of ions. The internal potential
was forced to lie in the range [EK+, ENa+] = [−90, 60],
the equilibrium potential of K+ and Na+, respectively
and action potentials were normalized to 30 mV for dis-
play. Neurons #1, 6 were implemented in the same way that
Neuron #7 was done with synaptic inputs 30 (mV ) from
Neurons #8, 9 respectively. Neurons #10, 11 were modeled
as independent nodes by independent Poisson processes
with firing rate λ.

We begin with Simulation 1 in which the synaptic
weights were fixed at α1 = α2 = α3 = α4 = 5 (mV )

and α5 = α6 = −2.5 (mV ), and the propagation delay
of each source neuron was set to be 10 ms. 60 sec.
voltage-trajectories of Neurons #1, 6, 7 were then simulated
according to the way described above. The first 1 sec. of
the trajectory of Neuron #7 with input rate λ = 40 Hz

is shown in Fig. 3 and the corresponding simulated spike
train data is shown in Fig. 4. The subthreshold trajectory of

Fig. 3 The first 1 sec. of a simulated voltage-trajectory of Neuron #7
with input rate λ = 40 Hz. The simulation was done according to the
way described in the context with α1 = α2 = α3 = α4 = 5 (mV ),
α5 = α6 = −2.5(mV ), and 10ms propagation delay. The subthreshold
trajectory is not very regular due to the lack of self dynamics, in other
words, Neuron #7 is completely triggered by Neurons #1 − 6
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Fig. 4 The first 1 sec. of a simulated spike train data of the simple
feedforward network with λ = 40Hz, α1 = α2 = α3 = α4 = 5 (mV ),
α5 = α6 = −2.5 (mV ), and 10 ms propagation delay

Neuron #7 is not very regular due to the lack of self dynam-
ics, compared to the nonlinear network Eq. (9a) introduced
next. However, in this case it faithfully reflects the effects of
the input neurons, that is, the actual degree of effects of the
input neurons are to be proportional to the corresponding
synaptic weights. To analyze the network directly through
the simulated spike train data, a Gaussian kernel filtering
with bandwidth 5 ms was performed to obtain an approxi-
mation of the subthreshold dynamics of each neuron in the
network, the result is depicted in Fig. 5. Based on the filtered

Fig. 5 A Gaussian kernel filtering with bandwidth 5 ms was per-
formed on the spike train data depicted in Fig. 4 to obtain an approx-
imation of the subthreshold dynamics of each neuron in the network.
The computations of the GCI and NSI were based on the filtered results
and this figure shows the first 250 data points

data, both GC and NS indices were computed for different
input rates λ = 40, 60, and 80 Hz. In each case, the indices
were both obtained from the average of 100 simulations and
the results are summarized in Table 1.

We can find from Table 1 that although the GC indices
correctly identify the direction of information flow among
the network, the effects of excitations and inhibitions could
not be differentiated directly by the sign of the indices
since they are by definition to be nonnegative. From the
GC indices, we can only tell that Neurons #2 − 4 have
more influences than Neurons #1, 5 have on Neuron #7.
Information about the underlying synaptic weights was not
provided. As can be found in the lower part of Table 1,
the synaptic weights were successfully reconstructed from
the spike train data by the NS indices in the sense that the
ratio between excitatory and inhibitory sources was close to
5.0 : −2.5 = 1 : −0.5 for all different input rates. We note
that the GC and NS indices from Neurons #8 − 12 to Neu-
ron #7 are all zero (i.e., insignificant). As the results show,
a large NSI does not necessarily imply a large GCI. That
is, a strong synaptic transmission can not always guarantee
a strong causal relationship; it depends also on the firing
pattern/timing of the source and the coordination with other
neurons. So, from this perspective, NSI can be treated as a
better proxy for synaptic weights rather than a new causal-
ity measure. GCI provides information on causal structure
while NSI provides complementary information on synaptic
transmission.

In Simulation 2, the input rate λ was fixed at 60 Hz

while the synaptic weights varied. Let α1 = α2 = α3 =
α4 = 5 (mV ) and α5 = α6 = −k × 5 (mV ). Three differ-
ent weight-ratio k = 0.5, 1.0, 1.5 were considered, and the
computed NS indices are presented in Table 2. We can find
that the ratio between excitatory and inhibitory sources was
still close to 1 : −k as weight-ratio changes.

3.3 Nonlinear network

Following the same network topology (Fig. 2) presented
in the previous subsection, here the dynamics of Neuron
#7 was modeled instead by the Izhikevich’s simple spik-
ing neuron model (Izhikevich 2003; Nageswaran et al.
2009; Nedungadi et al. 2009) as it can provide more neural
responses compared to classical IF neurons. Briefly, Izhike-
vich neurons are modeled by the following 2-D differential
equation with an after-spiking resetting:

v′ = 0.04v2 + 5v + 140 − u + I (9a)

u′ = a(bv − u) (9b)

if (v ≥ 30mV ) then v ← c and u ← u + d. (9c)

The variable v represents the membrane potential of the
neuron, u represents a membrane recovery variable, and I
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Table 1 The numerical results of Simulation 1 in Section 3.2

Input rate 1 → 7 2 → 7 3 → 7 4 → 7 5 → 7 6 → 7 8 → 1 9 → 6

Granger Causality Index (GCI)

λ = 40 0.0223 0.1972 0.1906 0.1919 0.0497 0.0066 2.9976 3.0085

(0.0035) (0.0125) (0.0155) (0.0129) (0.0059) (0.0031) (0.0868) (0.1016)

λ = 60 0.0411 0.2770 0.2768 0.2769 0.0791 0.0115 2.5959 2.6063

(0.0038) (0.0138) (0.0141) (0.0156) (0.0076) (0.0020) (0.0573) (0.0829)

λ = 80 0.0591 0.3466 0.3425 0.3444 0.1020 0.0156 2.3026 2.3235

(0.0080) (0.0188) (0.0155) (0.0168) (0.0083) (0.0037) (0.0531) (0.0575)

Neuron Synaptic Index (NSI)

λ = 40 0.1155 0.1145 0.1140 0.1137 -0.0571 -0.0555 2.9972 3.0083

(0.0043) (0.0040) (0.0052) (0.0046) (0.0034) (0.0069) (0.0868) (0.1018)

λ = 60 0.1530 0.1502 0.1505 0.1503 -0.0756 -0.0754 2.5959 2.6054

(0.0052) (0.0048) (0.0045) (0.0054) (0.0038) (0.0027) (0.0570) (0.0819)

λ = 80 0.1799 0.1795 0.1793 0.1783 -0.0893 -0.0898 2.3030 2.3237

(0.0044) (0.0049) (0.0059) (0.0053) (0.0036) (0.0046) (0.0532) (0.0571)

The effects of excitations and inhibitions can be differentiated directly by the sign of the NS indices and the ratio of effects between them was
close to 5.0 : −2.5 = 1 : −0.5. Numbers in parentheses are corresponding standard errors

represents the total input synaptic current. The parameter a

describes the time scale of u, characterizing the recovery
rate. The parameter b describes the sensitivity of u to the
subthreshold fluctuations of v. Parameters c and d are spike
reset values of v and u, respectively. Two sets of parameter
values were considered in this study: the fast spiking (FS)
neurons (a = 0.1, b = 0.25, c = −65, d = 2) and the low-
threshold spiking (LTS) neurons (a = 0.02, b = 0.25, c =
−65, d = 2).

Here, the parameter settings are: λ = 60 Hz, and α1 =
α2 = α3 = α4 = 5 (mV ), α5 = α6 = −k × 5 (mV ),
all of which with 10 ms propagation delay. The numerical
results for the FS and LTS neuron models with weight-
ratio k = 1.0, 1, 5, 2.0 are summarized in Table 3. The NS
indices were obtained from the average of 100 simulations,
and the first 0.5 sec. of the voltage fluctuations of the Neu-
ron #7 under FS and LTS models are depicted in Figs. 6
and 7, respectively.

The voltage-trajectories are much regular than that of the
almost-linear network (Fig. 3) due to the self-dynamics of
the term 0.04v2 + 5v + 140 in Eq. (9a). It can be consid-
ered that the nature (or the type) of Neuron #7, to some
degree, affects its own behavior; therefore, the effects of
the inputs (Neurons #1 − 6) will not be equivalent to the
underlying mechanism, meaning that the actual degree of
effects of the input neurons will not to be proportional to the
corresponding synaptic weights.

Now, it can be found from Table 3 that under both the
FS and LTS neuron models the negative NSIs from Neurons
#5, 6 to Neuron #7 grow in magnitude, relative to the posi-
tive ones from Neurons #1−4 to Neuron #7, as weight-ratio
k increase. Although the NS indices are not proportional
to the underlying weights as what mentioned above, the
trend is correctly captured for the increase of the negative
NSIs with increasing inhibition strength. Finally, we note
that the reason for the absence of the case k = 0.5 was

Table 2 The numerical results of Simulation 2 in Section 3.2

weight ratio 1 → 7 2 → 7 3 → 7 4 → 7 5 → 7 6 → 7 8 → 1 9 → 6

Neuron Synaptic Index (NSI)

k = 0.5 0.1530 0.1502 0.1505 0.1503 -0.0756 -0.0754 2.5959 2.6054

(0.0052) (0.0048) (0.0045) (0.0054) (0.0038) (0.0027) (0.0570) (0.0819)

k = 1.0 0.1077 0.1072 0.1063 0.1067 -0.1025 -0.1031 2.5928 2.6151

(0.0041) (0.0031) (0.0044) (0.0043) (0.0034) (0.0037) (0.0857) (0.0671)

k = 1.5 0.0615 0.0621 0.0612 0.0625 -0.0857 -0.0866 2.5849 2.5869

(0.0030) (0.0031) (0.0036) (0.0037) (0.0029) (0.0039) (0.0764) (0.0735)

The input rate λ was fixed at 60 Hz, α1 = α2 = α3 = α4 = 5 (mV ) , and α5 = α6 = −k × 5 (mV ). The ratio of effects between excitatory and
inhibitory sources was still close to 1 : −k as weight ratio changes. Numbers in parentheses are corresponding standard errors
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Table 3 The numerical results of the simulations in Section 3.3

weight ratio 1 → 7 2 → 7 3 → 7 4 → 7 5 → 7 6 → 7 8 → 1 9 → 6

NSI of the FS neuron model

k = 1.0 0.0634 0.0688 0.0691 0.0695 -0.0444 -0.0425 2.3089 2.3414

(0.0092) (0.0058) (0.0070) (0.0065) (0.0049) (0.0094) (0.0514) (0.0531)

k = 1.5 0.0514 0.0565 0.0572 0.0548 -0.0522 -0.0516 2.3269 2.3450

(0.0095) (0.0061) (0.0062) (0.0059) (0.0074) (0.0096) (0.0551) (0.0513)

k = 2.0 0.0428 0.0467 0.0460 0.0483 -0.0502 -0.0572 2.3309 2.3379

(0.0097) (0.0081) (0.0074) (0.0082) (0.0066) (0.0099) (0.0423) (0.0513)

NSI of the LTS neuron model

k = 1.0 0.0512 0.0536 0.0539 0.0538 -0.0256 -0.0238 2.0241 2.0213

(0.0095) (0.0092) (0.0085) (0.0071) (0.0051) (0.0084) (0.0351) (0.0399)

k = 1.5 0.0404 0.0438 0.0443 0.0436 -0.0373 -0.0387 1.9861 2.0182

(0.0093) (0.0071) (0.0067) (0.0059) (0.0051) (0.0075) (0.0434) (0.0569)

k = 2.0 0.0352 0.0394 0.0398 0.0390 -0.0401 -0.0443 2.0244 2.0124

(0.0093) (0.0061) (0.0068) (0.0042) (0.0068) (0.0094) (0.0554) (0.0530)

The parameter settings are: λ = 60 Hz, and α1 = α2 = α3 = α4 = 5 (mV ), α5 = α6 = −k × 5 (mV ), all of which with 10 ms propagation
delay. Numbers in parentheses are corresponding standard errors

that the inhibitory input was so weak to the dynamical sys-
tem that the resulting NSIs were not significantly different
from zero; that is, Neurons #5− 6 actually did not have any
influence on Neuron #7 even though the underlying synaptic
weights were not zero.

4 Real data analysis

In this section, we illustrate the application of the proposed
method to real spike train data and a simulation is also

Fig. 6 The first 0.5 sec. of a simulated voltage-trajectory of Neuron
#7 with k = 1 under the fast spiking (FS) neuron model (a = 0.1, b =
0.25, c = −65, d = 2)

given to examine the validity of the results. Note that sig-
nificant Granger causality interaction are again calculated
using an F -test corrected by FDR for multiple comparison
with confidence threshold at P − value = 0.05.

4.1 Setup and results

Multichannel electrophysiological recording was used for
tracking neuronal activity in the anterior cingulate cortex
(ACC) and the striatum (STR) and are the same data set
used in our previous study (Huang et al. 2013). Briefly,

Fig. 7 The first 0.5 sec. of a simulated voltage-trajectory of Neuron
#7 with k = 1 under the low-threshold spiking (LTS) neuron model
(a = 0.02, b = 0.25, c = −65, d = 2)
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neuronal spikes were recorded from the ACC and the STR
of urethane-anesthetized rats after administration of saline
or 0.05 or 0.5 mg/kg quinpirole. A multichannel neuronal
acquisition processor system (Plexon, Dallas, TX, USA)
was used for unit recording, with a filter range of 400 Hz to
8.8 kHz and a sampling rate of 40 kHz. Spikes were further
sorted using Offline Sorter (Plexon), based on principle-
component clustering with a user-defined template. All
animal procedures were approved by the Institutional Ani-
mal Care and Use Committee of National Ilan University
and adhered to the guidelines established by the Codes
for Experimental Use of Animals from the Council of
Agriculture, Taiwan.

For this study, data from two independent rats were
considered and the numbers of neurons recorded were:
8 (ACC, Rat#1), 9 (STR, Rat#1), 16 (ACC, Rat#2), and
15 (STR, Rat#2). The neurons were randomly put into 2
groups (ACC, Rat#1), 3 groups (STR, Rat#1), 4 groups
(ACC, Rat#2), and 3 groups (STR, Rat#2), and each group
had 4 (8/2) neurons (ACC, Rat#1), 3 9/3) neurons (STR,
Rat#1), 4 (16/4) neurons (ACC, Rat#2), and 5 (15/3) neu-
rons (STR, Rat#2). After the random grouping described
above, the single unit spike trains in each group were pooled
as a whole for investigating the brain network. Hence there
were 5 (2+ 3) pools in Rat#1 and 7 (4+ 3) pools in Rat#2.

After binning with bin width 2 sec., the GCIs between
these random pools can then be computed (Section 2.3).
Twenty minutes after quinpirole injection, 400 sec. data
from both Rat#1 and Rat#2 were used to compute the
GCIs. Significant GCIs were found only when certain ran-
dom group appear, meaning that certain neurons should be
pooled together to perform causality. These specific combi-
nations are summarized in Table 4, and the corresponding
GCIs and NSIs are summarized in Table 5. The results show
that, under the quinpirole administration, there were excita-
tory effects inside the ACC (Fig. 8a), excitatory effects from
the ACC to the STR (Fig. 8b and c), and inhibitory effects
inside the STR (Fig 8d).

Notice that, for single-input case, e.g., in rat 1 from Pool
#2 (ACC) to Pool #3 (STR), both GCI (0.1232) and NSI
(0.1116) reflect the degree of causal effect. However, the
NSI will be more appropriate than the GCI since the NSI
is obtained by fitting a more refined autoregressive model
(Step 4 in Section 2.3). For multiple-input case, e.g., in rat
2 from Pool #2 (ACC) to Pool #5 (STR) and from Pool #7
(STR) to Pool #5 (STR), the GCI (0.0879 and 0.1598) still
reflects the degree of causal effects while the NSI (0.1445
and -0.1058) reflects the degree and the type of synap-
tic transmission. From this perspective, NSI can be treated
as a new complement to provide information on synaptic
weights that original GCI does not provide.

Finally, we have to note that, under the saline administra-
tion, the same combinations performed no significant GCIs

Table 4 Groups found performing significant NSIs in Section 4.1

Rat no. Pool no. location elements

1 1 ACC 2,4,5,7

1 2 ACC 1,3,6,8

1 3 STR 3,5,7

1 4 STR 1,4,6

1 5 STR 2,8,9

2 1 ACC 4,8,10,16

2 2 ACC 1,5,6,11

2 3 ACC 3,7,9,12

2 4 ACC 2,13,14,15

2 5 STR 6,7,8,9,15

2 6 STR 1,3,10,11,14

2 7 STR 2,4,5,12,13

The numbers of neurons recorded were: 8 (ACC, Rat#1), 9 (STR,
Rat#1), 16 (ACC, Rat#2), and 15 (STR, Rat#2). Each group had
8/2 = 4, 9/3 = 3, 16/4 = 4, and 15/3 = 5 neurons. Hence there
were 2 + 3 = 5 pools in Rat#1 and 4 + 3 = 7 pools in Rat#2

(i.e., GCIs = 0). Furthermore, the GCIs between the ACC
of Rat#1 and the STR of Rat#2, and the GCIs between the
STR of Rat#1 and the ACC of Rat#2 were all computed, and
they were all zero.

4.2 Implications of the pooled data

A spike train obtained by superimposing individual spike
trains and disregarding where each spike came from is
called a pooled spike train (Gomez et al. 2005). Adjacent
neurons usually work together with each other to generate
suitable pooled spike trains to perform specific tasks. An
illustration is provided in Fig. 9. On the cause side (left
brown), the pooled train (pool 1) can be considered as a
collective input with respect to the effects of temporal or
spatial summation of one of the following two types: (i)
the additive effect produced by many PSPs that have been
generated from several very close synapses on the same
post-synaptic neuron at the same time. (ii) the additive effect
produced by many PSPs that have been generated from

Table 5 The NSIs between the pooled data from the combinations
summarized in Table 4

Rat no. From To GCI NSI

1 Pool #2 (ACC) Pool #1 (ACC) 0.1966 0.1035

1 Pool #2 (ACC) Pool #3 (STR) 0.1232 0.1116

1 Pool #2 (ACC) Pool #4 (STR) 0.1163 0.1995

2 Pool #2 (ACC) Pool #5 (STR) 0.0879 0.1445

2 Pool #2 (ACC) Pool #6 (STR) 0.1098 0.1121

2 Pool #7 (STR) Pool #5 (STR) 0.1598 -0.1058
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Fig. 8 The firing trajectories (400 sec. with 2 sec. bin) under the
quinpirole administration. a excitatory effects inside the ACC (NSI
= 0.1035). b excitatory effects from the ACC to the STR (NSIs
= 0.1116, 0.1995). c excitatory effects from the ACC to the STR

(NSIs = 0.1445, 0.1121). d inhibitory effects inside the STR (NSI
= −0.1058). It can be found that positive (negative) NSIs exhibit
positive (negative) correlations in the fluctuations of the signals

several synapses which have similar effects on the axon
hillock of the same post-synaptic neuron. On the effect side
(middle blue), the pooled train (pool 2) can be considered as
a collective output, which represents the total discharge of a
group of cooperative neurons in function. Again, the collec-
tive output (pool 2) can then be treated as a collective input
to trigger others (right purple).

Cross correlations can be dramatically amplified by pool-
ing, that is, weak correlations between pairs of neurons in
two populations can lead to strong correlations between
the summed activity of these two populations (Rosenbaum
et al. 2011). Similar results should hold for the GC analy-
ses. To check this, a simulation is designed as follows: Let
P = {p1, p2, ..., pn} be a Poisson spike train of time length
T with firing rate λ. Let Q be the output spike train of the
almost linear system in Section 3.2 with input P , synaptic

weight w, and time delay d . Since P will be treated as a
pooled spike train, we uniformly decompose it into k sub-
trains {Pi, i = 1, · · · , k}, that is, each pj ∈ P has the
same probability to be distributed into the sub-train Pi , for
j = 1, · · · , n and i = 1, · · · , k. As a result, ∪iPi = P ,
∩iPi = ∅, and the firing rate of each Pi is λ/k. Further,
let {Ui, i = 1, · · · , m} be m uncorrelated spike trains with
{Pi, i = 1, · · · , k} to serve as the role of environment neu-
rons. The distribution of each Ui is also Poisson with rate
λ/k. Now, for T = 10 (sec.), λ = 20 (spikes/sec.),
w = 8 (mV ), d = 10 (ms), k = 5, m = 2, and bin
width 0.1(sec.), the GCI from P to Q is 0.2655, a quite
large value; while the GCIs from Pi to Q is about 0.005, a
very low causality. The results are obtained from the aver-
age of 100 such simulations, and the first 2sec. of one of the
realizations is shown in Fig. 10; where P is labeled neuron
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Fig. 9 An illustration for pooled data. On the cause side (left brown),
the pooled train (pool 1) can be considered as a collective input with
respect to the effects of temporal or spatial summation of one of the
two types ((i) and (ii) in the context.) On the effect side (middle blue),

the pooled train (pool 2) can be considered as a collective output,
which represents the total discharge of a group of cooperative neurons
in function. Again, the collective output (pool 2) can then be treated as
a collective input to trigger others (right purple)

#1, Pi , neuron #2 − 6, Ui , neuron #7 − 8, and Q is labeled
neuron #9.

To check the appropriateness of random grouping used in
the previous subsection, 5 spike trains are randomly chosen
from Pi and Ui and then be pooled together to compute the
GCI from such pooled data to the target Q. The averaged
results are: when these 5 spike trains are all chosen from
Pi then the GCI attends the maximum 0.2655. When 4 is
chosen from Pi and 1 from Ui the GCI is destroyed and is
0.0641. Finally, when 3 is chosen from Pi and the other 2

Fig. 10 The first 2 sec. simulated spike trains of one of the realiza-
tions. The parameters are: T = 10 (sec.), λ = 20 (spikes/sec.),
w = 8 (mV ), d = 10 (ms), k = 5, m = 2, and bin width 0.1(sec.),
The source spike train P is labeled neuron #1, the decomposed trains
Pi are labeled neuron #2 − 6, the environment trains Ui are labeled
neuron #7 − 8, and the target Q is labeled neuron #9

are from Ui , the GCI is 0.0209. The results show that if the
pooled data contains the spikes of other irrelevant neurons
then the GCIs will be small and destroyed.

For real-world spike train data, individual neurons usu-
ally perform weak contributions to each other while groups
of neurons perform very significant contributions. In the for-
mer case, causal influences are difficult to be detected via
most statistical methods, grouping and pooling are usually
needed to enhance the causation. Since our data set is small,
random grouping approach is both reasonable and sufficient
to explore the network structure. Significant NSIs are also
found within an acceptable period of time. How to effi-
ciently group neurons is absent in our current analysis, but
has been being studied via numerical simulations. Efficient
grouping strategy is an interesting research topic and will be
included in a separate article in the future.

5 Discussion

The original Granger causality index is by definition non-
negative, thereby lacking of the trait for differentiating
the effects of excitations and inhibitions between neu-
rons. Inspired by the concept that the firing pattern of
the post-synaptic neuron is generally a weighted result of
the effects of several pre-synaptic neurons with possibly
different synaptic weights; a computational algorithm was
proposed (Section 2.3) under a BLP assumption for analyz-
ing neuronal networks by estimating the synaptic weights
among them. The extended Granger causality index, the
NSI, was shown to be able to measure both excitatory and
inhibitory effects between neurons by several numerical
simulations. The method was also illustrated to analyze real
spike train data from the ACC and the STR. Significant
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NSIs were found only when certain random groups appear
(Tables 4 and 5); and the results showed, under the quin-
pirole administration, the significant existence of excitatory
effects inside the ACC, excitatory effects from the ACC to
the STR, and inhibitory effects inside the STR.

Mathematically, the proposed NSI is just a weighted ver-
sion of the original GCI, that is, the NSI is obtained by
multiplying the normalized weights with the GCI from the
weighted trajectory to the target trajectory. Physiologically,
under the prerequisite conditions that (i) all of the connectiv-
ity relations between neurons are correctly identified and (ii)
the behavior of influences follow the vector autoregressive
model with some finite order; the original GCI can reveal
the degree of causal influences between neurons while the
extended NSI can reveal the degree and the type of synap-
tic transmission. Theoretically, the GCI and NSI can only
be approximations or even be spurious if either of these two
conditions fail to hold. It seems to be a very strong con-
straint for researchers to apply these approaches in practice.
However, things are not really that bad. The simulated IF
spiking networks in Section 3.2–3.3 are tested to be cor-
rectly captured by vector autoregressive model and show a
consistency between network structures and the proposed
indices. Finally and also importanly, note that significant
GCI or NSI do not necessarily signify a anatomical con-
nectivity since they are fundamentally statistical concepts.
Treated with care, the GCI and NSI could be useful for
researchers to infer possible relationships between network
structure or to construct a description of network dynamics
in neuroscience.

It should be pointed out that the significance of the NSI
can be checked directly via the significance test on the
GCI, since the proposed method is GC-based. In addition,
if voltage-trajectories are available then the method can be
applied directly without any ambiguity. For spike train data,
however, the role of voltage-trajectory can be replaced by
the trajectory of firing rate estimated using binning or Gaus-
sian kernel filtering. The high firing rate in the simulations
are to ensure significant inhibitory effects among the simple
networks. In practice, the high firing rate can be consid-
ered as a consequence of pooling spike trains. Low firing
rate leads to sparse spike trains, for which the Gaussian ker-
nel filtering will introduce highly artificial signals which
will hinder the autoregression modeling for computing the
GCI. The solution is applying some suitable preprocessing
(Zhu et al. 2003) or applying binning (Shimazaki and Shi-
nomoto 2007), which is more stable for converting sparse
spike trains.

In closing, it is worth noting some related articles for pos-
sible future works. (i) In Section 3.3, the NSI was shown to
successfully capture the behavior of synaptic transmissions.
Although the NSI values are correlated with the underlying
synaptic weights, it is not clear what the actual relationship

might be. Cadotte et al. have found that under certain
settings, the GCI and the synaptic weight has the following
nonlinear relationship (Cadotte et al. 2008):

FY→X = 1

1 + 384e−02124∗sw
, (10)

where sw denotes the synaptic weight. Similar results for
the NSI may be derived in the future using Eq. (10). (ii)
When faced with most scientific computing problem, a lin-
ear model is generally a first, basic, and winning strategy
to try. Neural spiking networks are highly complicated and
nonlinear, a linear model could be considered to be satisfac-
tory if it can well approximates the behavior of a nonlinear
dynamics to some degree. In the current study, the behavior
of the simulated nonlinear network is well captured by our
approach; obtaining the exact ratio of the synaptic weights
can be set as an important objective for us to strive. Our
proposed method and the BLP assumption could be refor-
mulated and generalized to handle nonlinear dynamics by
means of the nonparametric kernel modelling (Marinazzo
et al. 2011) in the future. (iii) This work did not consider
any hidden network structure in both theoretical and numer-
ical parts. The partial Granger causality, proposed by Guo
et al. (2008), may be used to extend the method to deal
with the effects of exogenous inputs or hidden neurons.
(iv) Granger causality is originally designed to measure
effect, not mechanism (Barrett and Barnett 2013). Numer-
ical evidences showed that Granger causality can, to some
degree, be used to infer the underlying mechanism. The GCI
only use the information of residual noises, there are still
some useful information which could be extracted from the
regression coefficients (Hu et al. 2011). The NSI uses the
summation of regression coefficients Eq. (7), other forms of
information may be developed in the future. (v) The Gaus-
sian filtering and binning techniques link the spike train data
and the statistical models for continuous signals, leading to
both mathematically easy derivations and computationally
efficient algorithms. However, distortions may arise after
the filtering is applied. A generalized linear model (GLM)-
based point process framework was proposed for directly
applying the GC on neural spike trains without any fil-
tering (Kim et al. 2011). A conceptually similar but more
robust measure, called directed information, was also pro-
posed (Quinn et al. 2011). The modality-independent nature
allows the measure to characterize statistically causal rela-
tionship between arbitrary stochastic processes. A more
sophisticated coupling model was also proposed (Pillow
et al. 2008). It’s parameters consist of a bank of stimulus
filters, spike-history filters, and couping filters. Splines can
also be used to fit nonlinearity in the stimulus filter. The
mathematics used in these frameworks are more involved
than that used in this paper, but we surmise that the pro-
posed algorithm and assumption can somehow be translated
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into them to obtain similar or more powerful results in the
future. (vi) Recently, a new framework of spatio-temporal
Granger causality has been proposed to reliably estimate
the Granger causality from experimental datasets possessing
time-varying properties (Luo et al. 2013). The NSI may be
extended to its dynamic version for automatically analyzing
experimental datasets without laborious jobs on windowing.
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Appendix: Derivation of the NSI using simple network

Here, we re-formulate the NSI using the simple network
(Fig. 1). Let u = αx+βy+γ z form the BLP ofw, then there
exist p, {fr, r = 1, 2, · · · , p}, and {dr , r = 1, 2, · · · , p}
such that wt = ∑p

r=1[frut−r + drwt−r ] + εt , where ε is
a stationary white noise possessing the smallest variance
among G = span({x, y, z, v1, v2, v3}). Replacing u with
the weighted trajectory, we obtain

wt =
p∑

r=1
[frut−r + drwt−r ] + εt

=
p∑

r=1
[fr(αxt−r + βyt−r + γ zt−r ) + drwt−r ] + εt

=
p∑

r=1
[αfrxt−r + βfryt−r + γfrzt−r + drwt−r ] + εt .

(A.1)

On the other hand, fitting to data the following empirical
regression

wt =
p∑

r=1

[arxt−r +bryt−r +crzt−r +grvt−r +drwt−r ]+ ε̃t ,

(A.2)

where grvt−r := ∑3
k=1gk,rvk,t−r for convenience.

• If v is stochastically independent of x, y, z, w, then we
have gr ≡ 0. Since {ar}, {br}, {cr } can be obtained

through Least-Squares method, comparing Eq. (A.2)
with Eq. (A.1), we have

p∑

r=1

ar = α

p∑

r=1

fr,

p∑

r=1

br = β

p∑

r=1

fr,

p∑

r=1

cr = γ

p∑

r=1

fr,

(A.3)

and get

α : β : γ =
p∑

r=1

ar :
p∑

r=1

br :
p∑

r=1

cr , provided
p∑

r=1

fr > 0,

(A.4)

where sgn(α) = sgn

(
p∑

r=1
ar

)

, sgn(β) =

sgn

(
p∑

r=1
br

)

, and sgn(γ ) = sgn

(
p∑

r=1
cr

)

.

• If v is linear dependent of x, y, z, w, then gr � 0
and {ar}, {br}, {cr } will be affected. However, since ε

in Eq. (A.1) possessing the smallest variance among G,
taking out v does not increase the variance of ε̃, there-
fore we still can correct the model coefficients by ruling
out the useless information v.

Finally, the neuron synaptic index from x, y, z to w are
defined respectively as

Nx→w := α
|α|+|β|+|γ |Fu→w,

Ny→w := β
|α|+|β|+|γ |Fu→w,

Nz→w := γ
|α|+|β|+|γ |Fu→w,

(A.5)

where |Nx→w| + |Ny→w| + |Nz→w| = Fu→w is the GC
index from the weighted trajectory u = αx +βy +γ z to the
target trajectory w.
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