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a b s t r a c t

Accurately sorting individual neurons is a technical challenge and plays an important role in identifying
information flow among neurons. Spike sorting errors are almost unavoidable and can roughly be divided
into two types: false positives (FPs) and false negatives (FNs). This study investigates how FPs and FNs
affect results of the Granger causality (GC) analysis, a powerful method for detecting causal interactions
between time series signals. We derived an explicit formula based on a first order vector autoregressive
model to analytically study the effects of FPs and FNs. The proposed formulawas able to reveal the intrinsic
properties of the GC, and was verified by simulation studies. The effects of FPs and FNs were further
evaluated using real experimental data from the ventroposterior medial nucleus of the thalamus. Some
practical suggestions for spike sorting are also provided in this paper.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In neuroscience research, it is important to identify information
flow among multiple neurons in the brain, according to the
recorded neural activity data. A powerful method for achieving
this is the Granger causality (GC) which arose in economics after
being introduced by Wiener and Granger (Granger, 1969, 1980;
Wiener, 1956). The GC is a time series inference (TSI) type of
method, proposes that if the prediction of one time series can be
improved with the knowledge of a second time series, then there
is a causal influence from the second time series to the first. This
prediction ismade by using the vector autoregressive (VAR)model.
In this model, if the variance of the prediction error of one time
series at the present time can be reduced by including the past
values of another series, then the latter is said to Granger-cause
the former. This causality can be quantified by the so-called GC
Index (GCI) which can be used to determine whether there is any
causal interaction between time series. The GC was shown to be
effective and has been widely deployed in recent neuroscience
research (Bressler, Richter, Chen, & Ding, 2007; Cadotte, DeMarse,
He, &Ding, 2008; Cadotte et al., 2010; Cao,Maran, Dhamala, Jaeger,
& Heck, 2012; Zhang et al., 2012). In addition to the time domain
GC, other versions of the GC (e.g., frequency, and time–frequency
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domain) have been developed aswell (Baccala & Sameshima, 2001;
Dhamala, Rangarajan, & Ding, 2008). The time domain formulation
of GCI is briefly introduced in the next section, and we refer the
reader to an article by Bressler and Seth (2011) for more details
about the GC.

Neurons emit action potentials (APs) that are known as spikes
and play an important role in communicating among cells. The
temporal sequence of APs produced by a neuron, which shows
its own activity, is also known as a spike train. In multi-channel
recordings (Brown, Kass, & Mitra, 2004), the APS of neurons
are detected and differentiated from background electrical noise
before single-unit spike trains are used to probe neural behaviors.
This technical procedure is called spike sorting. However, it is not
easy to obtain spike train data that fully agree with the AP because
of noise, superimposed APs, and difficulties of differentiating
waveforms of APs from different neurons. Spike sorting often
introduces unavoidable errors (Deborah, Won, & Patrick, 2003;
Lewicki, 1998). These errors can roughly be divided into two types,
false positives (FPs) and false negatives (FNs). An FPmeans an error
detection of an event that is not a real spike (just an electrical
noise) or is a spike from another neuron. Conversely, an FN means
that real spikes were not detected or were classified into groups
of other neurons. One may be interested in the question: ‘‘How do
FPs and FNs affect the estimation of functional connectivity among
neurons?’’. This study answered this question analytically and also
via numerical simulations. The change in the GCI due to spike
sorting errors was derived analytically to form an explicit formula,

0893-6080/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.neunet.2013.06.001



Author's personal copy

250 P.-C. Shao et al. / Neural Networks 46 (2013) 249–259

and a direct discussion of the effects of FPs and FNs is possible.
Moreover, numerical simulations were used to verify the analyses.
We constructed three types ofmodels for sorting errors: thosewith
uniform, random, and concentrative distributions. That is, errors
occur uniformly, randomly, and concentratively in spike trains.
Changes in the GCI were computed as these types of spike sorting
errors were artificially added to the simulated spike trains, and the
effects on the directional interactions were also investigated.

Finally, it is worth noting that spike trains are non-equally
spaced data and are regarded as a point process. Interpolation or
filtering is usually employed to convert point processes to equally
spaced time series. Previous studies on spike trains (Kaminski,
Ding, Truccolo, & Bressler, 2001; Zhu, Lai, Hoppensteadt, & He,
2003) proposed several methods to convert a time series from
being non-equally spaced to equally spaced. This study adopted
the procedure of binning to convert spike trains into time series
data, which are suitable for GC analyses. Although the GCI between
two point processes has been directly defined in Kim, Putrino,
Ghosh, andBrown (2011) recently,we still cannot abandonbinning
because it reduces the complexity of analysis, and considers also
the effect of temporal summation of action potentials in the
neuroscience.

This article is organized as follows. Section 2 presents an an-
alytic formula based on a first order autoregression to show how
error processes affect the GCI. Section 3 presents some models for
sorting errors andprobes the proposed formula further via numeri-
cal simulations. Section 4 presents a real data evaluationwhere the
effects of sorting error on the GCI are evaluated using real experi-
mental data. Section 5 provides some suggestions for spike sorting
and the discussion.

2. Modeling and analysis

Based on a first order autoregression, we derived an explicit
formula for changes in the GCI in terms of four parameters
involving the error process. We also investigated the influences
of various types of errors on the GCI indicated by the proposed
formula.

2.1. A short introduction to the GCI

Let x and y be two stationary time series with zero means. The
first order linear autoregressive model for x and y is given by
x(n)
y(n)


= A


x(n − 1)
y(n − 1)


+


ϵ(n)
η(n)


, (1)

where A is the model coefficient matrix, and the residuals ϵ and η
are zero-mean uncorrelated white noises with covariance matrix
6. Here the variances Var(ϵ) and Var(η) are called prediction er-
rors, whichmeasure the accuracy of the autoregressive prediction.
More specifically, Var(η) measures the accuracy of the prediction
of y(n) based on the previous values x(n − 1) and y(n − 1).

Now consider the reduced model that excludes the time series
variable x

y(n) = B y(n − 1) + ζ (n), (2)

where B is the corresponding model coefficient. The variance
Var(ζ ) measures the accuracy of the prediction of y(n) based only
on its previous value y(n − 1). For η in (1) and ζ in (2), if Var(η) is
significantly less than Var(ζ ) in some statistical sense, then we say
that x Granger-cause y. This causality can be quantified by the GCI
from x to y formulated as:

Fx→y = ln
Var(ζ )

Var(η)
. (3)

It is clear that Fx→y = 0when Var(η) = Var(ζ ), i.e., x has no causal
influence on y, and Fx→y > 0 when x Granger-cause y. Notice that
Fx→y is nonnegative, i.e., Var(η) is bounded above by Var(ζ ), since
the full model defined in (1) should have a better prediction ability
than the reduced model defined in (2). Finally, we note that the
GCI values should be checked for significance by using hypothesis
testing, andmore details of the GCI can be found in Ding, Chen, and
Bressler (2006), Granger (1969, 1980).

2.2. An explicit formula

When inaccurate spike sorting occurs, the sorting errors can
be regarded as a perturbed error process. For simplicity, we
assume that only the source process x has a sorting error and the
corresponding error process is denoted by δx. We can assume that
δx is zero mean and the model in (1) is perturbed as follows when
δx is superposed on x:

{x + δx}(n)
y(n)


= Ã


{x + δx}(n − 1)

y(n − 1)


+


ϵ̃(n)
η̃(n)


, (4)

where Ã is the corresponding model coefficient matrix, and the
residuals ϵ̃ and η̃ have the covariance matrix 6̃. Let Sy := Var(ζ ),

S := Var(η), and S̃ := Var(η̃). Since the perturbed quantity δx is
superposed only on x, the reduced models for (1) and (4) are the
same as (2). Then the original GCI from x to y and the perturbed
GCI from x + δx to y are

F = ln
Sy
S

and F̃ = ln
Sy
S̃

, (5)

respectively. To investigate the perturbed GCI, we derived an
explicit formula for F̃ in terms of four parameters involving δx
which are ξ1 := E


δx21


, ξ2 := E


x1δx1


, ξ3 := E


y2δx1


, and ξ4 :=

E

y1δx1


. Further denote X0 = E


x21


, Y0 = E


y21


, Y1 = E


y1y2


,

Z1 = E

x1y1


, and Z2 = E


x1y2


. We are now ready to present the

formula for F̃ .

Proposition 1. In the situation described above, F̃ can be presented
explicitly by the following formula (for calculation see the Appendix):

F̃ = ln
Sy

S + Θ
, Θ =


Sy − S


I, (6)

where

I =
1

Y0

X0 + ξ1 + 2ξ2


−


ξ4 + Z1

2

Y0


X0 + ξ1 + 2ξ2


−

1
Sy − S


Y0


ξ3 + Z2

2
+


Y0 − S


ξ4 + Z1

2
− 2Y1


ξ3 + Z2


ξ4 + Z1


. (7)

Note that since S + Θ in (6) is bounded above by Sy, we have that Θ
is upper bounded by Sy − S, i.e., I has an upper bound 1.

We end this subsection by the following two remarks.

Remark 1. In the same situation of Proposition 1, the following
inequalities hold:

Y0 ≥ Sy ≥ S and Y1 ≤ 0. (8)

According to (2), we have Y0 = Var(y1) ≥ Var(ζ ) = Sy. The re-
mainder Sy ≥ S just follows by the reason that the prediction error
of the reducedmodel in (4) is always less than or equal to that of the
fullmodel in (1). The latter holds because of the stationary assump-
tion. IfY1 = E(y1y2) > 0, then ywill not be stationary. ThusY1 ≤ 0.
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Remark 2. The following result can be obtained easily by using (5)
and (6).

F̃ > F , if I < 0.

F̃ = F , if I = 0.

F̃ < F , if 0 < I < 1.

F̃ = 0, if I = 1.

(9)

2.3. Essential GCI factors

The formula defined by (6) and (7) is complicated but it reveals
the intrinsic property of the perturbed GCI, depending on the four
factors ξ1, ξ2, ξ3 and ξ4 which, by the definition, capture the main
properties of error signals, namely, the spike sorting errors. A
systematic characterization of these parameters’ influences on the
GCI would provide a heuristic understanding of the effect of spike
sorting error for researchers tomake further decisions. Thus, in this
subsectionwediscuss Proposition 1more by a total of five different
situations and relate each of them to a biological meaning.

We now present the following corollaries for investigating the
term I defined in (7), and this is equivalent to investigating the term
F̃ in (6).

Corollary 1 (ξ2 = ξ3 = ξ4 = 0). We start with the simple case
in which the error process δx is uncorrelated with the underlying
processes x and y, i.e., ξ2 = ξ3 = ξ4 = 0. In this case I can be
simplified as follows:

I(ξ1) =
Y0ξ1

Y0ξ1 + [X0Y0 − Z2
1 ]

. (10)

The above equation shows that I increases as ξ1 increases, but it
is bounded above by the limit L := limξ1→∞ I(ξ1) = 1. Hence,
by (6), the weakened GCI F̃ is bounded below by limξ1→∞ F̃(ξ1) =

ln Sy
S+(Sy−S)L = ln Sy

Sy
= 0. In reality, this limit cannot be attained

because the variance ξ1 = E

δx21


cannot approach infinity. Thus, the

GCI will never vanish if the error process δx is uncorrelated with the
underlying process x. We refer to this corollary as FPs being composed
of electrical noises or the spikes of other unconnected neurons during
spike sorting.

Corollary 2 (ξ2 < 0, ξ3 < 0, ξ4 < 0). Suppose the error process
δx is negatively correlated with the underlying processes x and y,
i.e., ξ2, ξ3, and ξ4 are all negative. Since the perturbed quantity δx is
considered to be produced from inaccurate spike sorting, the maximal
negative quantity which δx can be is −x. Therefore, we have the
following constraint:

− X0 ≤ ξ2 < 0, −Z2 ≤ ξ3 < 0, −Z1 ≤ ξ4 < 0, (11)

and the equalities are attained when δx = −x.

Now, according to (7), (8) and (11), I is positive, increasing, and
bounded above by 1. In other words, Θ → Sy − S and F̃ → 0
as ξ1 → ∞ or


ξ2, ξ3, ξ4


→


−X0, −Z2, −Z1


. This corollary is

related to FNs in spike sorting.

Corollary 3 (ξ2 < 0, ξ3 < 0, ξ4 < 0 Simplified). Suppose δx is cor-
related with the underlying processes as in Corollary 2. If y is further
completely induced by x, i.e., y cannot explain itself (B = 0 in (2)),
then we obtain Sy = Y0, Y1 = 0 and (7) can be further simplified as:

I =

Y0

X0 + ξ1 + 2ξ2


−


ξ4 + Z1

2
−

Y0
Sy−S


ξ3 + Z2

2
Y0


X0 + ξ1 + 2ξ2


−


ξ4 + Z1

2 . (12)

Eq. (12) still shows us that I → 1 as ξ1 → ∞. On the other hand,
if ξ1 is fixed and the negative correlation between x and δx increases
(i.e., (ξ2, ξ3, ξ4) decreases simultaneously to (−X0, −Z2, −Z1)), then
the value I increases to 1 because of the quadratic convergence:
ξ3 + Z2

2
→ 0. (13)

Note thatwhen

ξ2, ξ3, ξ4


attains the lower bound


−X0, −Z2, −Z1


,

i.e., δx = −x, there is nothing left to analyze. Therefore, we do not con-
sider this case.

Corollary 4 (ξ2 = 0, ξ3 > 0, ξ4 > 0). Suppose the error process δx
is positively correlated with y, and is uncorrelated with x, i.e., ξ2 =

0, ξ3 > 0, and ξ4 > 0. Since I = 0 when ξ1 = ξ2 = ξ3 = ξ4 = 0, it
is easy to conclude that, in this case, I is negative and decreasing, i.e.,
F̃ > F and F̃ increases as ξ3 or ξ4 increase. We refer to this corollary
as FPs being composed of spikes of some connected neurons which are
positively correlated with the target neuron during spike sorting.

Corollary 5 (ξ2 > 0, ξ3 > 0, ξ4 > 0). Suppose the error process
δx is positively correlated with both x and y, i.e., ξ2 > 0, ξ3 > 0,
and ξ4 > 0. Since I is increasing in ξ2, we know that F̃ is then
decreasing in ξ2. Therefore, F̃ in this case exhibits the same behavior as
that in Corollary 4 if


ξ3, ξ4


dominates ξ2; but F̃ is decreasing if ξ2

dominates

ξ3, ξ4


. We refer to this corollary as FPs being composed

of spikes of some connected neurons which are positively correlated
with both of source and target neurons during spike sorting.

The results of above five corollaries are schematically summa-
rized in Table 1.

2.4. GCI vs. variance reduction

Because 0 ≤ S ≤ Sy, we set S = (1 − k)Sy with 0 ≤ k ≤ 1 and
the GCI in (5) becomes

F = ln
Sy

(1 − k)Sy
= − ln(1 − k). (14)

Next, relate F and k through k = 1− exp(−F). Since Sy − S = kSy,
k =


Sy − S


/Sy represents the percentage of variance reduction.

More precisely, it represents the relative decrease in prediction
errors from the reduced model (2) to the full model (1). For
example, k = 0 means no (0%) variance reduction, and the GCI is
equal to zero. On the contrary, k = 1means a total (100%) variance
reduction, and the GCI is equal to infinity. Fig. 1 shows how the GCI
relates to k, and it is almost totally reduced when the GCI is equal
to 5.

3. Simulation study

Here, we present some models for sorting errors and further
probe formula (7) via numerical simulations. For the FP case, we
first consider that FPs are made up of electrical noises or spikes of
unconnected neurons. Spikes of connected neurons are considered
in Section 3.4.

3.1. Models

We first construct a point process X =

p1, p2, . . . , pN


gen-

erated by a Poisson process with rate λ in the time interval [0, T ],
where N is the total number of points. The second point process
Y =


q1, q2, . . . , qN


is then generated by Y = X + N


m, σ


,

where N

m, σ


is a normal random variable with mean m and

standard deviation σ . More precisely, qi = pi + N

m, σ


, i =

1, . . . ,N . The point process Y presents a time lagmwith respect to
X ifm > 0 and σ = 0. This study only considersm > 0 and σ > 0.
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Table 1
A schematic summary of Corollaries 1–5. The factors ξi, i = 1, 2, 3, 4 and error process δx are described in Section 2.2. + (−) stands for positive (negative)
sign. FP (FN) stands for false positive (negative). ↑ (↓) stands for increasing (decreasing).

ξ2 ξ3 ξ4 Effects on the GCI Type Interpretations on δx

0 0 0 GCI ↓ as ξ1 ↑ FP Electrical noises or spikes of unconnected neurons.
− − − GCI ↓ as ξ1 ↑ FN Spike missing.
0 + + GCI ↑ as ξ3 ↑ or ξ4 ↑ FP Connected neurons which are positively correlated with the target neuron.
+ + + GCI ↑ if (ξ3, ξ4) dominates ξ2

GCI ↓ if ξ2 dominates (ξ3, ξ4)
FP Connected neurons which are positively correlated with both of source and

target neurons.

Fig. 1. The relationship between the Granger Causality Index (GCI) and k. This
transforms GCI values to the corresponding percentage of variance reduction in the
residual noise process.

Spike sorting errors include two types: fake (FP) and missing
(FN) spike events. The fake spike event is an erroneous detection of
an event that is not a real spike or is a spike from another neuron.
Conversely, a missing spike event means that spikes were not
detected orwere classified into groups of other neurons. Therefore,
the fake spike case can be regarded as adding extra points to
a point process. This type of error is denoted by ‘‘A-type’’. The
missing spike case can be regarded as removing some points from
a point process, and is denoted by ‘‘R-type’’. Forms of the addition
or removal of points are considered for uniform, random, and
concentrative distributions. The number of fake or missing spike
events is rN , where r (=p%) is the ratio of fake or missing points
compared to the original spike train. The following explains the
generation of these types in detail.

Uniform-partition addition (PA)model: The extra points

p̃i : 1 ≤

i ≤ rN

on the time interval [0, T ] form a uniform partition of

[0, T ]. More precisely, p̃i = i1t , where 1t =
T

rN−1 .
Random-uniform addition (UA) model: The extra points p̃i, i =

1, . . . , rN , on the time interval are generated from a uniform
distribution U


[0, T ]


random variable.

Random-normal addition (NA) model: The extra points p̃i, i =

1, . . . , rN , on the time interval are generated from a normal dis-
tributionN


T/2, σNA


randomvariable. The standard deviation

parameter σNA represents different degrees of concentration.
Uniform-partition removal (PR) model: A set of reference points
p̃j : 1 ≤ j ≤ rN


, which is a uniform partition of [0, T ] was

used to remove spike events from

pi : 1 ≤ i ≤ N


. First, fix p̃j

and then remove the point that is closest to p̃j.
Random-uniform removal (UR) model: Points in


pi : 1 ≤ i ≤

N

are randomly removed using a discrete uniform Ud


1,N


random variable, i.e., all points have the same probability of
being removed.
Middle-succession removal (SR) model: In this model, the
removed points are successive and located near the center T/2
of the time interval [0, T ]. The number of spikes is rN .

We note that sorting errors only occur in the source process X , and
Y is assumed to be inerrable.

3.2. Setup

Set the parameters, λ = 2, T = 100,m = 0.1 for the rate of the
Poisson process, the total time, and the time lag, respectively. To
apply autoregressive modeling, we convert point processes


pi :

1 ≤ i ≤ N

and


qi : 1 ≤ i ≤ N


to time series through the

procedure of binning with the bin size as the time lag m. Results
are obtained from the average of 100 simulations for each random
case at fixed error percentage r . To investigate the effects of errors
on the GCI, we observe the results from various r, σ , and σNA.

3.3. Simulation results

We note that the simulations and the corresponding results are
related to Corollaries 1–3 of Section 2.3.

3.3.1. A-type vs. R-type
Fig. 2(a) shows the results for experiment 1 in which σ = 0.02,

σNA = T/8, and the error percentage increased by 0.1. In this
figure, the GCI of the SR model decreases the fastest among all of
the models as r increases. All R-type errors cause information loss
and greatly weaken the GCI when the error percentage increases.
If r = 1, the underlying signal is totally destroyed by the errors,
and the causality is undetermined. The PA model produces the
largest GCI for a fixed r . Fig. 2(a) also shows that A-Type GCIs are
greater thanR-TypeGCIs. However, this phenomenon is not always
valid. The error in the NAmodel is uncorrelatedwith the signal and
weakens the GCI more than any of the R-Type models when σNA
is small. Fig. 2(b) shows that a highly non-stationary process can
average out much more underlying causality than the others, for
the case of σNA = T/64 in the NA model.

3.3.2. Standard deviation factor σ

We now investigate the effects of the standard deviation σ on
GCIs. Fig. 2(c) and (d) show the results for experiments 2 and 3 in
which parameter σ is 0.04 and 0.06, respectively. Observations in
Fig. 2(a), (c), and (d) show that the behaviors of the profiles with
σ = 0.04, 0.06 closely resemble the behavior of the profile with
σ = 0.02. In the PA and PR models, let F denote the GCI value
without a sorting error (r = 0), and F̃(r) denote the GCI value with
sorting error of error percentage r . Table 2 presents the relative
errors of the GCI for r from 0.1 to 0.9 of the PA and PR models in
the three experiments, where

Relative error(r) :=
F̃(r) − F

F
× 100%.

Table 2 shows that Experiment 3 had the flattest PA-curve and PR-
curve of the three experiments, and the underlying causality of the
PAmodels were all around 50% off at r = 0.9 because the signal to
noise ratio


SNR =

Var(x)
Var(δx)


was close to 1. Although they were all

around 50% off, the corresponding decreases in the percentage of
variance reduction are greatly differed, and this can be seen from
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(a) Experiment 1. (b) Concentrative normal.

(c) Experiment 2. (d) Experiment 3.

Fig. 2. (a) Simulation results of Experiment 1, inwhich the parameter settingswereλ = 2, T = 100,m = 0.1, σ = 0.02. (b) Simulation results of amuchmore concentrative
normal, in which the parameter settings were λ = 2, T = 100,m = 0.1, σ = 0.02, and σNA = T/64. (c) Simulation results of Experiment 2, in which the parameter settings
were λ = 2, T = 100,m = 0.1, σ = 0.04. (d) Simulation results of Experiment 3, in which the parameter settings were λ = 2, T = 100,m = 0.1, σ = 0.06. The error
percentages r were all 0–0.9, and increased by 0.1.

Table 2
Relative errors, F̃(r)−F

F × 100%, of GCI for r = 0.1–0.9 of the PA and PR models in the three experiments.

Experiment r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9

Relative errors (%) of the PA model

1(σ = 0.02) −16.46 −27.24 −35.29 −41.48 −46.26 −50.26 −53.43 −55.78 −57.60
2(σ = 0.04) −12.27 −21.87 −29.41 −34.36 −39.84 −42.63 −46.28 −48.93 −51.20
3(σ = 0.06) −11.59 −19.78 −26.99 −32.13 −36.63 −40.89 −43.42 −46.29 −48.41

Relative errors (%) of the PR model

1(σ = 0.02) −17.10 −30.16 −41.89 −51.31 −59.78 −68.60 −75.86 −84.02 −92.07
2(σ = 0.04) −12.64 −22.71 −32.74 −41.82 −50.63 −59.24 −68.72 −78.04 −88.96
3(σ = 0.06) −11.58 −19.21 −27.60 −37.45 −47.44 −54.15 −65.07 −75.34 −87.68

Fig. 1. In the PA model, the three F values corresponding to the
three experimentswere 1.24, 0.64, and0.38, and the corresponding
F̃(0.9)were 0.71, 0.33, and 0.18, respectively. Eq. (14) can compute
the corresponding relative decreases in the percentage of variance
reduction, which were 28.17%, 40.89%, and 46.85%, respectively.

3.3.3. Explanation of the GCI curves
Wenow discuss the behaviors of the curves in Fig. 2(a). Because

A-type error processes (δx) are uncorrelated with the underlying
process (x), curves of the PA, UA, and NA models can be analyzed
and directly explained by (6) and (10). These three curves decrease
as the size of the errors (ξ1) increases. They reach zero only when

the error size is infinity, which is actually unfeasible. Therefore,
these curves slowly decrease and never reach zero. In other words,
the underlying causality remains.

Moreover, the PA-curve is above the UA-curve, and the UA-
curve is above the NA-curve. This is because the NA model has
the largest error size, followed by the UA model and the PA model
at the same error percentage. On the other hand, error processes
of the PR, UR, and SR models are correlated with the underlying
process, and (12) is used instead of (10) since ξ2, ξ3, and ξ4 are
nonzero.

With approximately the same error size, these curves decrease
much more quickly than the uncorrelated case because of the
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(a) The ξ1 to ξ4 of NA model. (b) The ξ1 to ξ4 of SR model.

Fig. 3. (a) ξ1 to ξ4 of the NA model, in which the parameter settings were λ = 2, T = 100,m = 0.1, σ = 0.02, σNA = T/64. (b) ξ1 to ξ4 of the SR model, in which the
parameter settings were λ = 2, T = 100,m = 0.1, σ = 0.02. The error percentages r were both 0–0.9, and increased by 0.1.

negative correlations. Unlike the former, these curves almost reach
zero at the error percentage r = 0.9. In addition, the PR-curve is
above the UR-curve, and the UR-curve is above the SR-curve. This
is because the SR model has the largest error size, followed by the
UR and PR models at the same error percentage.

We now discuss the behaviors of the curves in Fig. 2(b), which
shows that A-type errors are not always better than R-type errors.
GCI values of theNAmodelwithσNA = T/64 are smaller than those
of the SRmodel when the error percentage is between r = 0.2 and
r = 0.6. To see what occurred, we computed ξ1 to ξ4 at each error
percentage for these two cases, and results are respectively shown
in Fig. 3(a) and (b). Comparing these two panels indicates that (i) ξ1
of theNAmodel ismuch larger than that of the SRmodel. According
to (12), theGCI of theNAmodel is smaller than that of the SRmodel.
(ii) The SR model has large ξ2 and ξ3. According to (13), the GCI
of the SR model is significantly smaller than that of the NA model
when r is quite large, even though the ξ1 of the SR model is still
relatively smaller than that of the NA model. Fig. 2(b) verifies this
analysis showing that the error size of the NAmodel dominates the
negative correlation of the SR model when the error percentage is
between r = 0.2 and r = 0.6. Contrarily, the negative correlation
of the SR model dominates the error size of the NA model when
r > 0.6. Therefore, it is necessary to integrate the error size and
the negative correlation to identify the behavior of the GCI, and
the reason is that the error size of the NA model is much larger
than that of the SR model when 0 ≤ r ≤ 0.6.

3.4. Supplementary simulations of FPs

Wenowpresent supplementary simulations of FPs by consider-
ing the case when FPs are composed of connected neurons. There
are no supplementary simulations for FNs since they have only one
situation as discussed in Corollary 2, and they were simulated in
preceding work. The simulations here are devoted to Corollaries 4
and 5 of Section 2.3. The following explain the simulations in detail
and the model parameters are fixed at λ = 2, T = 100,m = 0.1,
and σ = 0.02.

Experiment A: Suppose X and Z are two independent Poisson
processes with equal rate λ in [0, T ], where N is the total
number of points of X . Let Y be another point process generated
by Y = Z + N (m, σ ). Hence, we have that Y is induced by
Z , and X is independent of both Y and Z . Then rN points of Z
are randomly added to X , where r denotes the error percentage.
After binning with bin sizem, the GCI from X to Y as a function
of r and the corresponding ξ ’s are shown in Fig. 4(a) and (b).

This experiment considers the situation that FPs are composed
of spikes of connected neurons which are positively correlated
with target neurons. Note that the true causality between X and
Y is uncorrelated (GCI = 0), which means that the relationship
between neurons may be erroneously identified when a FP
occurs during spike sorting.
Experiment B: Here we consider another situation that Y is in-
duced by both X and Z , that is, Y = {X + N (m, σ )} ∪ {Z +

N (m, σ )}, where X and Z are independent Poisson processes
with equal rate λ in [0, T ]. Then rN points of Z are randomly
added to X . After binning, the GCI from X to Y and the corre-
sponding ξ ’s are shown in Fig. 4(a) and (c). The result shows that
the relationship is correctly identified, but the strength (GCI) is
overestimated. Experiments A and B enlighten that the risk of
an erroneous causal identification should be estimated by two
parts: the relationship (causal or noncausal) and the strength
(the magnitude of the GCI).
Experiment C: Suppose Z is a Poisson processes with rate λ
in [0, T ]. Let X and Y be point processes generated by X =

Z + N (m, σ ) and Y = X + N (m, σ ), i.e., X is induced by Z , and
Y is induced by X . Then rN points of Z are randomly added to
X . After binning, the GCI from X to Y and the corresponding ξ ’s
are shown in Fig. 4(a) and (d). The result shows that the effect
of the positive-correlation (ξ2 > 0) between Z and X dominates
the effect of the positive-correlation (ξ3 > 0, ξ4 > 0) between
Z and Y ; thus the GCI decreases. This experiment is devoted to
Corollary 5 of Section 2.3.

3.5. Simulation for threshold detection

Spike sorting consists of two parts: AP detection and AP clas-
sification, which are based on thresholding and clustering meth-
ods, respectively. Herewediscuss the relationship between theGCI
value and the detecting threshold via simulation. The classification
part will be discussed in Section 4 by using real experimental data.

We simulate a sequence of 100 APs, denoted by A, having fixed
interspike interval (ISI) length as shown in Fig. 5(a). Thenwe add an
independent white noise to A with SNR = 0.8 for the background
noise. Denoting the standard deviation of the observed noisy data
by τ , Fig. 5(b) and (c) show the detected spikes with threshold
values being 2.5τ and 3.0τ , respectively. It is easy to see that
a lower threshold is tending to result in FPs of spike-detection
and a higher one is tending to result in FNs. Now, let pX be the
point process obtained from perfect-detection, i.e., pX coincides
with A. Let pY = pX + N


0.1, 0.02


represent the point process
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(a) Supplementary simulations for FP. (b) The ξ1 to ξ4 of Experiment A.

(c) The ξ1 to ξ4 of Experiment B. (d) The ξ1 to ξ4 of Experiment C.

Fig. 4. (a) Simulation results of Experiment A–C for FP. (b) ξ1 to ξ4 of the Experiment A. (c) ξ1 to ξ4 of the Experiment B. (d) ξ1 to ξ4 of the Experiment C.

(a) Underlying action potentials.

(b) Spike-detection with threshold value 2.5 s.d.

(c) Spike-detection with threshold value 3 s.d.

Fig. 5. (a) The first 10 APs of the underlying AP sequence A. (b) The detected spikes (marked by ◦) with threshold value 2.5τ . (c) The detected spikes (marked by ◦) with
threshold value 3.0τ .
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(a) GCI result with varying threshold values.

(b) Number of false positives.

(c) Number of false negatives.

Fig. 6. (a) The relationship between GCI value and threshold value by changing the threshold from 1.5τ to 3.5τ . (b) Number of FPs increases as threshold value decreases.
(c) Number of FNs increases as threshold value increases.

obtained from a causal sequence of APs, say B. After binning
with bin width 0.1, we can infer the causal relationship between
these two sequences of APs, A and B, by computing the GCI from
the binned data of pX to that of pY . To be consistent with our
analyses, the errors created by threshold-detectionwill be put only
on the source sequence A. We are now ready to investigate the
relationship between GCI value and threshold value by changing
the threshold from 1.5τ to 3.5τ , and it is shown in Fig. 6(a). The
result shows that 2.5τ performs the best (i.e., obtaining the largest
GCI value), since we know that B is induced by A. To investigate
more deeply into this result, numbers of FPs and FNs are further
shown in Fig. 6(b) and (c), and these results give us the following
findings: (i) Number of FPs increases as threshold value decreases.
(ii) Number of FNs increases as threshold value increases. (iii) FPs
affect GCI less than FNs since the number of FPs (>100 at 1.5τ ) is
much larger than that of FNs (>60 at 3.5τ ) and the decreasing rate
(slope) of GCI in [2.5, 3.5] (=0.4270) is larger than the increasing
rate (slope) of GCI in [1.5, 2.5] (=0.3674). (iv) As a result of (iii),
we can conclude that choosing a threshold lower than the optimal
(=2.5τ ) is better and preserves more information than choosing a
threshold higher than the optimal.

We now discuss in details the result of this simulation through
the following four remarks: (1) For a large threshold, the sorting
error is only composed of FNs, without FPs. Therefore the GCI
increases as threshold decreases. When the threshold decreases
to certain value, the error of FPs occurs. The GCI will reach the
maximum and then decreases as the threshold decreases to 0.
This result contributes the explanation of the effects of FPs and
FNs on the GCI. (2) We can conclude that variations of the GCI
are determined by which one of FP and FN to be the dominate
sorting error and the total number of FPs and FNs as well for
a fixed threshold. (3) Although we cannot choose the optimal
threshold in real experiments, (iv) is still useful and it gives a
criterion for designing methods of choice of an optimal threshold.
(4) Researchers may imitate the procedure of the simulation by
using their own A and background noise to determine the optimal
threshold after examining the number of FPs and FNs.

4. Real data evaluation

Here we design two sorting procedures in real operation and
then evaluate the effect of sorting errors on the GCI using real
experimental data.

4.1. Experimental setup

Neuronal spikes were recorded from the ventroposterior me-
dial (VPM) nucleus of the thalamus and are the same data set
used in our previous study (Tseng, Tsai, Iwata, & Yen, 2012).
The single-unit recording method is described in Tseng’s report
(2012). Briefly, spikes were amplified (7000 32,000-fold), filtered
(0.25 13 kHz), and digitized at 40 kHz. Recording was performed
while a rat was awake. Extracellular single units were recorded in
real time using time-voltage windows and a principle component-
based template-matching algorithm (Sort Client, Plexon). Wave-
formswere saved and re-sortedusingOffline Sorter (Plexon), based
on principle-component clustering, with a user-defined template.
The sample we used here contained 2 or more distinguishable
clusters. To evaluate the effect of sorting errors on the GCI, vari-
ous percentage errors were created from 20%, 40%, 60%, and 80%
less or more than the data set of a complete cluster. Shrinkage
or expansion of the sample size was calculated based on the dif-
ference between a waveform of a neuron and a template, com-
putedby theOffline Sorter (tolerance fit function). Note that cluster
expansion included the other cluster of a neuron or noises. We
used 6 neurons with an averaged firing frequency of 0.199 Hz, and
therefore


6
2


× 2 = 30 neuron pairs (i.e., GCIs) were derived

((Neuroni,Neuronj) i = 1, . . . , 6 j ≠ i). Being consistent with
our analyses, the errors created by shrinkage or expansion were
put only on the source (Neuroni). In the sequel, we use the FN and
FP-procedures to respectively represent shrinkage and expansion
operations.
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(a) Results of real data. (b) The ξ1 to ξ4 of FN-decrease.

(c) The ξ1 to ξ4 of FP-decrease. (d) The ξ1 to ξ4 of FP-increase.

Fig. 7. (a) Three kinds of Granger Causality Index (GCI) patternswhich frequently appeared in real experimental data. (b) ξ1 to ξ4 of the false-negative (FN)-decrease pattern.
(c) ξ1 to ξ4 of the false-positive (FP)-decrease pattern. (d) ξ1 to ξ4 of the FP-increase pattern.

4.2. Experimental results

From these real data we found three GCI patterns which fre-
quently appeared under the above-mentioned sorting procedures,
one of themwas found under the FN-procedure, and the other two
were found under the FP-procedure. These patterns are explained
in detail.

FN-decrease: The GCIs of all the neuron pairs (24 of 30 pairs)
decreased as the error percentage increased under the FN-
procedure (Fig. 7(a)) except pairs with a zero GCI (6 of 30
pairs). The four corresponding ξ ’s are shown in Fig. 7(b), and
it shows that the error process induced by the FN-procedure
was negatively correlated with processes of both the source
and target neurons; thus the GCI decreased (resembling that in
Fig. 3(b)).
FP-decrease: The GCIs of neuron pairs (6 of 30 pairs) decreased
as the error percentage increased under the FP-procedure
(Fig. 7(a)) and the four corresponding ξ ’s of this pattern
(Fig. 7(c)) show that the error process was positively correlated
with process of the source neuron and was uncorrelated with
that of the target neuron. The GCI decreased because the effect
of ξ2 dominated the effect of ξ3 and ξ4. In other words, the error
process was composed of spikes of some connected neurons
which were positively correlated with the source neuron.
FP-increase: The GCIs of neuron pairs (16 of 30 pairs) increased
as the error percentage increased under the FP-procedure
(Fig. 7(a)) and the four corresponding ξ ’s of this pattern

(Fig. 7(d)) show that the error process was positively correlated
with processes of both the source and target neurons. The GCI
increased because the effect of ξ3 and ξ4 dominated the effect of
ξ2. In other words, the error process was composed of spikes of
some connected neurons which were strongly correlated with
the target neuron.
Finally, we note that there are 5 neuron pairs with a zero
GCI, and 3 neuron pairs with unchanged GCIs under the FP-
procedure.

5. Discussion

Because spike sorting errors are almost unavoidable, this
study was devoted to investigating how sorting errors affect the
identification of information flow among neurons. The analyses of
this paper allowed us to directly discuss the effects of FPs and FNs
through the proposed formula, and the results also revealed that
they do not have the same effect on spike sorting. In Section 2, we
derived an analytic formula (7) in terms of factors ξ1 to ξ4, and this
formula can be used, when incorporating (6), to obtain how the
GCI changes according to the error signal. Under the FN type of
sorting error, we know the error process is negatively correlated
with processes of both the source and target neurons; thus the
GCI will always be underestimated. On the other hand, under
the FP type of sorting error, the GCI may be underestimated or
overestimated depending on the error process. If the error process
is only composed of electrical noise or spikes of other unconnected
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neurons, the GCI will be underestimated, but in general, the
accuracy is better than cases of the FN type. If the error process
is composed of spikes of some positively correlated neurons, then
the GCI will be overestimated, and a noncausal neuron pair may be
mistaken for a causal pair.

From the perspective of the GC, we provide some suggestions
for spike sorting. (i) Missing successive spikes should be avoided
as far as possible since this mostly weakens the GCI (Fig. 2(a), SR
model). (ii) A-type errors, which are concentratively added, may
weaken the underlying GCI more than R-type errors (Fig. 2(b),
NA model). (iii) During spike detection, choosing a threshold
lower than the optimal is better than choosing a threshold higher
than the optimal because fake spike events (electrical noise)
affect the GCI less than missing spike events (Figs. 2(a), (c), (d),
and 6). (iv) During spike classification, cluster shrinkage from the
optimal cluster is better than cluster expansion from the optimal
because FPs may result in overestimating the GCI and mistaking a
noncausal neuron pair for a causal pair (Fig. 4(a), Experiment A).
FNs can only result in an underestimation of the GCI (Fig. 7(a), FN-
decrease), and this is a relatively conservative and secure strategy
for scientific research. For (i) and (ii), in fact, we really cannot avoid
missing spikes successively or adding spikes concentratively in the
analysis of real data. However, our suggestions still are useful in
some cases when recordings are made in the brain regions that
neurons are known with complementary intermittence discharge.
For example, since the inspiratory-related and expiratory-related
neurons coexist in the dorsal and ventral respiratory group
(Takeda & Matsumoto, 1997), and the firing of these two types of
neurons are complementary intermittence, so successive missing
or concentrative adding of spikes after sorting may occur. We
should examine the time series of spike trains to ensure if
the patterns of complementary intermittence are confused after
sorting, and to infer whichmodificationwould bemadewhen GCIs
are calculated. For (iii) and (iv), these two conclusions are just
opposite to each other. That is, in spike detection, the FPs are better
than the FNs, because the FPs consist of only electrical noises. But
in spike classification, the FNs are better than the FPs because
the FPs consist of not only electrical noises but also maybe some
causal neurons. Finallywenote that thewayof choosing an optimal
threshold or cluster size varies from case to case, since it depends
on the sorting method used, and the experimental situation you
met. This study is just trying to give a general concept for choosing
a better threshold and cluster size.

The results of this study are based on restrictive situations. The
analytic formula was obtained from a first order autoregressive
model, and the error processeswere only superposed on the source
process. However, based on these simplifications, the intrinsic
properties of the GCI can be seen more clearly than in complete
but more complicated situations. Although there are still a lot of
concerns on the technical aspect of applying the GCI to determine
the relationship among neurons in practice, researchers may be
interested in understanding intuitively the effect of spike sorting
error before these techniques are really applied, and this is exactly
what this paper wants to provide. Real neuronal networks are
much more complex than the simplified assumptions of the
analyses and simple models of the simulation. The procedures
presented in this study need further development to approach the
complex reality. The well-established framework of information
theory, for example, might be employed to provide more-credible
statistical inferences about true causality in the future.

Appendix. Derivation of the explicit formula

We first denote xk = x(n − k) and yk = y(n − k) for conve-
nience. Then for themodel in (1), we computematrices A and6 by

the method of Yule–Walker (Priestley, 1994). Since x and y are sta-
tionary,multiply (1) from the right by the vector


x(n−1) y(n−1)


and then take the expectation E, we have R(−1) = AR(0), where

R(0) =


E

x21


E

x1y1


E

x1y1


E

y21

 
and

R(−1) =


E

x1x2


E

x2y1


E

x1y2


E

y1y2

 .

Thus, we get A = R(−1)R−1(0). Alternatively, 6 can be obtained
by 6 = R(0) − AR⊤(−1) (Wei, 2006). Substituting A into 6 gives

6 = R(0) − R(−1)R−1(0)R⊤(−1). (A.1)

Using the same computation, we have Ã = R̃(−1)R̃−1(0) and
6̃ = R̃(0) − ÃR̃⊤(−1) for the perturbed model in (4), where

R̃(0) =


E

x21 + δx21 + 2x1δx1


E

x1y1 + y1δx1


E

x1y1 + y1δx1


E

y21

 
and

R̃(−1) =


E

(x1 + δx1)(x2 + δx2)


E

x2y1 + y1δx2


E

x1y2 + y2δx1


E

y1y2

 
.

Substituting Ã into 6̃ also gives

6̃ = R̃(0) − R̃(−1)R̃−1(0)R̃⊤(−1). (A.2)

Using (A.1) and (A.2), and denoting δR(0) := R̃(0) − R(0) and
δR(−1) := R̃(−1) − R(−1), it follows that

1 := 6̃ − 6

= δR(0) − δR(−1)R−1(0)R(1) − R̃(−1)R−1(0)δR(1)

+ R̃(−1)R−1(0)δR(0)R̃−1(0)R̃(1). (A.3)

By the definition of S and S̃ defined in (5) we know that S̃ − S =

12,2, the (2, 2)-element of matrix 1. Hence, we can decompose S̃
into S + 12,2. Annoying algebraic computation from (A.3) gives
12,2 = (Sy − S)I , where I is defined in (7), and the formula in (6)
is obtained by denoting Θ = (Sy − S)I .
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