Cauchy's Mean-Vaule Theorem.
Let f(t) and g(t) be continuous functions on [a,b] such that they are
both differentiable in (a,b). Then there exists a number
such that
證明. 令
讀者若還不明白證明中 h(t) 的由來, 請再研究 Langrange 均值定理證明前的討論, 並請注意此處考慮的曲線是 , 而 A=(g(a),f(a)),B=(g(b),f(b))二點的連線的方程式可取為 (g(b),g(a))(y-f(a))-(f(b)-f(a))(x-g(a))=0. 所以 |h(t)| 其實是 (g(t),f(t)) 到 AB 連線的常數倍.
下面習題的第 11, 12, 13 題是均值定理的另外一些推廣.