next up previous
Next: Tangent Spaces and Differentials Up: 多變數函數的微分學 Previous: 偏導函數

Chain Rule and the Gradient

First we extend the chain rule to functions of several variables.


\begin{theorem}Let $D \subset \mathbb{R} ^{n}$ , $f$\space : $ D \rightarrow \ma...
...\frac{\partial f }{\partial x_{j} } (p).
\end{displaymath}\space
\end{theorem}

Proof. Let $ \gamma_{k} (t) $ be the components of $ \gamma (t) $, i.e.,

\begin{displaymath}\gamma (t) = (\gamma_{1} (t), \gamma_{2} (t),\ldots , \gamma_{n} (t)).
\end{displaymath}

We define the vector-valued function $\overline{x}_{0} (t),\ldots , \overline{x}_{n} (t) $ by putting

\begin{displaymath}\overline{x}_{j} (t) = (\gamma_{1} (t),\ldots , \gamma_{j} (t), \gamma_{j+1} (0),\ldots , \gamma_{n} (0)).
\end{displaymath}

Then

\begin{displaymath}f(\gamma (t)) - f(\gamma (0))
= \sum_{j=1}^{n} [f(\overline{x}_{j} (t)) - f(\overline{x}_{j-1} (t))].
\end{displaymath}

Applying the mean-value theorem, we have for $ \mid t \mid $ sufficiently small,

\begin{eqnarray*}\lefteqn{f(\bar{x}_{j}(t)) - f(\bar{x}_{j - 1}(t))}\\
&=& (r_{...
...ots, r_{j - 1}(t), \varphi_{j} (t), p_{j + 1}, \ldots , p_{n}).
\end{eqnarray*}


where $ \varphi_{j} (t) $ lies between pj and rj(t). Since

\begin{displaymath}\lim_{t \rightarrow {0} } \frac{r_{j} (t) - r_{j} (0)}{t} = u_{j}
\end{displaymath}

and

\begin{displaymath}\lim_{t \rightarrow {0} } \frac{\partial f}{\partial x_{j} } ...
... \frac{\partial f}{\partial x_{j} } (p_{1} ,\cdots , p_{n} ),
\end{displaymath}

we have

\begin{displaymath}\left. \frac{d}{dt} f(r(t)) \right\vert _{t=0} = \lim_{t \rig...
...(0))}{t} = \sum u_{j} \frac{\partial f}{\partial x_{j} } (p).
\end{displaymath}

Q. E. D.

Corollary Let $D \subset \mathbb{R} ^{n} $, $f : D \longrightarrow \mathbb{R} $and $p \in D$. Suppose that $\displaystyle\frac{\partial f}{\partial x_{1} } ,\cdots , \frac{\partial f}{\partial x_{n} }$are all defined in a neighborhood of p and are continuous at p. Then for every vector $ u =(u_{1} ,\ldots , u_{n} ) $, the derivative Du f(p) exists and is given by

\begin{displaymath}D_{u} f(p) = \sum_{j=1}^{n} u_{j} \frac{\partial f}{\partial x_{j} } (p) .
\end{displaymath}

例 7   Let $ f(x,y,z) = x^{2} y + y^{2} z , g(u,v) = u + v , \, h(u,v) = u - v , j(u) = e^{u} $ ,

F(u,v) = f(g(u,v), h(u,v), j(u)).

Compute Fu and Fv.

Solution. To compute Fu, we treat v as a constant and apply the chain rule. Thus we have

\begin{eqnarray*}F_{u}(u,v) & = & f_{x}g_{u} + f_{y}h_{u} + f_{z}j'(u) \\
& = &...
...}e^{u} \\
& = &3u^{2} + 2uv - v^{2} + (u - v)(2 + u - v)e^{u}.
\end{eqnarray*}


Similarly,

\begin{eqnarray*}F_{v}(u,v) & = & f_{x}g_{v} + f_{y}h_{v} \\
& = & 2xy - x^{2} ...
...- 2(u + v)e^{u} \\
& = & u^{2} - 2uv - 3v^{2} - 2(u - v)e^{u}.
\end{eqnarray*}


Set

\begin{displaymath}\nabla f(p) = (\frac{\partial f}{\partial x_{1} } (p),\ldots , \frac{\partial f}{\partial x_{n} } (p)).
\end{displaymath}

This vector in $\mathbb{R} ^{n} $ is called the gradient (梯度) of f at p. It is also written as grad f. The symbol $\nabla$ is pronounced nabla or atled. Under the conditions of Corollarry, we have

\begin{displaymath}D_{u} f(p) = \nabla f(p)\, \cdot \, u
\end{displaymath}

for all $ u \in \mathbb{R} ^{n} $.

$ \nabla f(P) \neq {0}$. 令 $ r = \parallel \nabla f(p) \parallel, v = \nabla f(p)/r $. 則 v 為單位向量. 由 Cauchy 不等式知對任意單位向量 u

\begin{displaymath}D_{u} f(p) = \nabla f(p)\cdot u = rv \cdot u \leq r \parallel u \parallel \, \parallel v \parallel =r .
\end{displaymath}

等式成立的充要條件是 $u\cdot v=\parallel u \parallel \, \parallel v \parallel =1 $, 即 u=v. 因此有


\begin{theorem}Let $p$\space be a point in the domain
$D \subset \mathbb{R} ^{n...
... ,
and the value of the maximum is $ \parallel f(p) \parallel $ .
\end{theorem}

換言之, 梯度的方向就是 f 增加最快的方向, 其大小乃是這個最快的增加率. $-\nabla f(p)$ 的方向也就是 f 減少最快的方向, 其大小當然也是這個最快的減少率.


next up previous
Next: Tangent Spaces and Differentials Up: 多變數函數的微分學 Previous: 偏導函數

1999-06-28