 
 
 
 
 
   
¦b°ª¤¤½Ò¥»ÁÙ¦³¤@ÓÆ[©À¥i¨Ñ§Ú̧Q¥Î, ¨º«K¬O  ¯x°}.
§ÚÌ¥Î
¯x°}.
§Ú̥Π
 ªí¥Ü©Ò¦³¹ê¼Æªº¶°¦X,
ªí¥Ü©Ò¦³¹ê¼Æªº¶°¦X,
 ªí¥Ü©Ò¦³¹ê¼Æ
ªí¥Ü©Ò¦³¹ê¼Æ  ¯x°}ªº¶°¦X,
ºÙ¤§¬° n ºûªÅ¶¡ (n-dimensional space).
¯x°}ªº¶°¦X,
ºÙ¤§¬° n ºûªÅ¶¡ (n-dimensional space).
 ¤¤ªº¤¸¯À¤£¹L¬O n Ó¹ê¼Æ«ö¤@©wªº¦¸§Ç±Æ¦¨¤@¦C¦Ó¤w.
¥H¤U§Ṳ́À§O±q¦V¶qªºÆ[ÂI©MÂIªºÆ[ÂI¨Ó°Q½×
¤¤ªº¤¸¯À¤£¹L¬O n Ó¹ê¼Æ«ö¤@©wªº¦¸§Ç±Æ¦¨¤@¦C¦Ó¤w.
¥H¤U§Ṳ́À§O±q¦V¶qªºÆ[ÂI©MÂIªºÆ[ÂI¨Ó°Q½× 
 .
.
¦b°ª¤¤½Ò¥»¤¤´¿°Q½×¹L3ºû¦V¶qªººØºØ¹Bºâ. §ÚÌn§â³o¨ÇÆ[©À±À¼s¨ì n ºû
¥h. ³] 
 ¤Î
¤Î
 ¬°
¬° 
 ¤¤ªº¨âÓ¤¸¯À.
¤¤ªº¨âÓ¤¸¯À.
 .
¥O
.
¥O
 
 
 
 ªí¥Ü, ¦b^¤å¤¤¥¦¤]¥s dot product.
¤Tºû¦V¶qªÅ¶¡¤¤³o¨Ç¹Bºâ©Òº¡¨¬ªºªk«h,
¦b n ºû¦V¶qªÅ¶¡¤¤³£¤´µM¦¨¥ßŪªÌ¸Õ¦Û¦æÃÒ¤§.
·í§Ú̦b
ªí¥Ü, ¦b^¤å¤¤¥¦¤]¥s dot product.
¤Tºû¦V¶qªÅ¶¡¤¤³o¨Ç¹Bºâ©Òº¡¨¬ªºªk«h,
¦b n ºû¦V¶qªÅ¶¡¤¤³£¤´µM¦¨¥ßŪªÌ¸Õ¦Û¦æÃÒ¤§.
·í§Ú̦b 
 ¤¤¦Ò¼{³o¨Ç¹Bºâ®É,
¥¦«K¥s§@ n ºû¦V¶qªÅ¶¡(n-dimensional vector space),
¨ä¤¤ªº¤¸¯À¥s§@ n ºû¦V¶q. Y
¤¤¦Ò¼{³o¨Ç¹Bºâ®É,
¥¦«K¥s§@ n ºû¦V¶qªÅ¶¡(n-dimensional vector space),
¨ä¤¤ªº¤¸¯À¥s§@ n ºû¦V¶q. Y 
![$x=(x_{1},x_{2},\ldots,x_{n})\in [\mathbb{R} ]^{n}$](img12.gif) ,
«h¹ê¼Æ
,
«h¹ê¼Æ 
 ¥s§@¥¦ªº¤À¶q (components).
¨CÓ¤À¶q³£¬O 0 ªº¦V¶q¥s§@¹s¦V¶q (null vector), §Ṳ́]¥Î 0 ªí¥Ü¥¦.
¥s§@¥¦ªº¤À¶q (components).
¨CÓ¤À¶q³£¬O 0 ªº¦V¶q¥s§@¹s¦V¶q (null vector), §Ṳ́]¥Î 0 ªí¥Ü¥¦.
Y x ¬° n ºû¦V¶q«h (x,x) ªº¥¤è®Ú¥s§@¥¦ªºªø (magnitude,norm),
¥H  ©Î |x| ªí¥Ü. Y¹G¦V¶q¤§ªø¬° 1, «hºÙ¸Ó¦V¶q¬°³æ¦ì (unit) ¦V¶q.
Y
©Î |x| ªí¥Ü. Y¹G¦V¶q¤§ªø¬° 1, «hºÙ¸Ó¦V¶q¬°³æ¦ì (unit) ¦V¶q.
Y  ,«h
,«h 
 ¬°»P x ¦P¤è¦V¤§³æ¦ì¦V¶q.
¬°»P x ¦P¤è¦V¤§³æ¦ì¦V¶q.
 ¤¤ªº³æ¦ì¦V¶q u ³£¥i¥Hªí§@
¤¤ªº³æ¦ì¦V¶q u ³£¥i¥Hªí§@
 
 ¬° u ©M x ¶bªº§¨¨¤. Y u ¬°
¬° u ©M x ¶bªº§¨¨¤. Y u ¬° 
 ¤¤ªº³æ¦ì¦V¶q,
¥O
¤¤ªº³æ¦ì¦V¶q,
¥O  ,
,
 ,
,
 ¬° u ©M¤T®y¼Ð¶b¶¡ªº§¨¨¤,
«h u ¦b¤T®yÀY¼Ð¶b¤Wªº§ë¼v¤À§O¬°
¬° u ©M¤T®y¼Ð¶b¶¡ªº§¨¨¤,
«h u ¦b¤T®yÀY¼Ð¶b¤Wªº§ë¼v¤À§O¬° 
 ,
,
 ,
,
 .
³o¤TӼƥs°µ u ªº¤è¦V¾l©¶ (directional cosines) ¦Ó u ¥i¥Hªí¦¨
.
³o¤TӼƥs°µ u ªº¤è¦V¾l©¶ (directional cosines) ¦Ó u ¥i¥Hªí¦¨
 
 ªí¥Ü.
³]
ªí¥Ü.
³] 
 ¬°¤@ÂI. ¦pªG§â x ¬Ý¦¨ n ºû¦V¶q,
«KºÙ¤§¬°¸Ó®y¼Ð¦V¶q (coordinate vector).
®y¼Ð¦V¶q¬° 0 ªºÂI¥s°µ Rn ªºìÂI.
³] A, B ¬°¨âÂI, ¨ä®y¼Ð¦V¶q¤À§O¬° x, y.
«h y-x ¥ç¥Nªí¥H A ¬°°_ÂI, ¥H B ¬°²×ÂIªº¦V¶q,
¦³®É¥Î
¬°¤@ÂI. ¦pªG§â x ¬Ý¦¨ n ºû¦V¶q,
«KºÙ¤§¬°¸Ó®y¼Ð¦V¶q (coordinate vector).
®y¼Ð¦V¶q¬° 0 ªºÂI¥s°µ Rn ªºìÂI.
³] A, B ¬°¨âÂI, ¨ä®y¼Ð¦V¶q¤À§O¬° x, y.
«h y-x ¥ç¥Nªí¥H A ¬°°_ÂI, ¥H B ¬°²×ÂIªº¦V¶q,
¦³®É¥Î 
 ¨Óªí¥Ü.
A, B ¤§¶¡ªº¶ZÂ÷©w¬°
¨Óªí¥Ü.
A, B ¤§¶¡ªº¶ZÂ÷©w¬°  ,
³q±`¥H AB ªí¥Ü.
¦b n ºûªÅ¶¡¤¤¦P®É¦Ò¼{³o¶ZÂ÷®É, ¥¦«K§@ n ºû¼Ú¤óªÅ¶¡ (Eulidean space).
ÁöµM n ºûªÅ¶¡©M n ºû¼Ú¤óªÅ¶¡¦bÃö©À¤W¤£¤@¼Ë,
¦ý¬Ý¦¨¶°¦X®É¥¦Ì³£¬O n ºûªÅ¶¡ªº¤£¦P±¦V.
§â
,
³q±`¥H AB ªí¥Ü.
¦b n ºûªÅ¶¡¤¤¦P®É¦Ò¼{³o¶ZÂ÷®É, ¥¦«K§@ n ºû¼Ú¤óªÅ¶¡ (Eulidean space).
ÁöµM n ºûªÅ¶¡©M n ºû¼Ú¤óªÅ¶¡¦bÃö©À¤W¤£¤@¼Ë,
¦ý¬Ý¦¨¶°¦X®É¥¦Ì³£¬O n ºûªÅ¶¡ªº¤£¦P±¦V.
§â 
 ¬Ý¦¨¦V¶qªÅ¶¡, «h¥¦ªº¤¸¯À x, y ¶¡«h¦³ x+y, x-y,
¬Ý¦¨¦V¶qªÅ¶¡, «h¥¦ªº¤¸¯À x, y ¶¡«h¦³ x+y, x-y,
 µ¥¹Bºâ, ¤S¦³¦V¶qªºªøªº·§©À.
§â
µ¥¹Bºâ, ¤S¦³¦V¶qªºªøªº·§©À.
§â 
 ¬Ý¦¨¼Ú¤óªÅ¶¡, «h¥i¥H°Q½×
¬Ý¦¨¼Ú¤óªÅ¶¡, «h¥i¥H°Q½× 
 ¤ºÂI¶¡ªº¶ZÂ÷,
¦ýÂI©MÂI¤£¯à°µ¥[ªk, ´îªkµ¥¹Bºâ. ¦]¬°§ÚÌ©T·N§â²Å¸¹²V¥Î,
©Ò¥HY x, y ¬°
¤ºÂI¶¡ªº¶ZÂ÷,
¦ýÂI©MÂI¤£¯à°µ¥[ªk, ´îªkµ¥¹Bºâ. ¦]¬°§ÚÌ©T·N§â²Å¸¹²V¥Î,
©Ò¥HY x, y ¬° 
 ¤ºªº¨âÓÂI, a, b ¬°¨âÓ¹ê¼Æ,
«h ax+by ¥i¥H¥Nªí¥H ax+by ¬°®y¼Ð¦V¶qªºÂI.
¥H«á§Ú̱`±`³o¼Ë¥Î.
¨Ò¦p¦b©³¤U°Q½×½u¬q©Mª½½u®É´Nn¦p¦¹¸ÑÄÀ¦b 2 ºû 3 ºûªÅ¶¡, ¤º¿n»P§¨¨¤.
§ë¼v¦³±K¤ÁÃö«Y, °ª¤¤½Òµ{¤w¦³¤¶²Ð, ¨änÂI¦p¤U:
³] A ©M B ¬°
¤ºªº¨âÓÂI, a, b ¬°¨âÓ¹ê¼Æ,
«h ax+by ¥i¥H¥Nªí¥H ax+by ¬°®y¼Ð¦V¶qªºÂI.
¥H«á§Ú̱`±`³o¼Ë¥Î.
¨Ò¦p¦b©³¤U°Q½×½u¬q©Mª½½u®É´Nn¦p¦¹¸ÑÄÀ¦b 2 ºû 3 ºûªÅ¶¡, ¤º¿n»P§¨¨¤.
§ë¼v¦³±K¤ÁÃö«Y, °ª¤¤½Òµ{¤w¦³¤¶²Ð, ¨änÂI¦p¤U:
³] A ©M B ¬° 
 ¤º¨âÂI, ¨ä®y¼Ð¦V¶q¤À§O¬° x ©M y.
«h¶°¦X
¤º¨âÂI, ¨ä®y¼Ð¦V¶q¤À§O¬° x ©M y.
«h¶°¦X 
 ªí¥Ü½u¬q AB,
¦Ó¶°¦X
ªí¥Ü½u¬q AB,
¦Ó¶°¦X 
 ·í
·í  ®Éªí¥Ü³s±µ AB ªºª½½u.
°²Y A ©M B ³£¤£¬OìÂI O(§Y
®Éªí¥Ü³s±µ AB ªºª½½u.
°²Y A ©M B ³£¤£¬OìÂI O(§Y 
 ,
¥O
,
¥O  ªí¥Ü OA ©M OB ªº§¨¨¤, «h
ªí¥Ü OA ©M OB ªº§¨¨¤, «h
 
 
 ¬°®y¼Ð¦V¶qªºÂI.
D §Y A ¦b OB ¤Wªº§ë¼v,
¬O OB ©M A ¶ZÂ÷³Ìµuªº¦a¤è.
¬°®y¼Ð¦V¶qªºÂI.
D §Y A ¦b OB ¤Wªº§ë¼v,
¬O OB ©M A ¶ZÂ÷³Ìµuªº¦a¤è.
·í  ®É, ¤£¦A¯à¯u¥¿¹Ï¥Ü
®É, ¤£¦A¯à¯u¥¿¹Ï¥Ü 
 ,
¥i¬O³o¨Ç´X¦ó«ä¸ô¨ÌµMºZ³q,
½Ð¬Ý¤U±ªº»¡©ú:
    
³] A, B ¬O
,
¥i¬O³o¨Ç´X¦ó«ä¸ô¨ÌµMºZ³q,
½Ð¬Ý¤U±ªº»¡©ú:
    
³] A, B ¬O 
 ¤º¤GÂI, ¨ä®y¼Ð¦V¶q¤À§O¬° X ©M Y. ¥O
¤º¤GÂI, ¨ä®y¼Ð¦V¶q¤À§O¬° X ©M Y. ¥O
 
 (¨£
(¨£  ¨Ò 12).
ÁÙ¥iÃÒ©ú
¨Ò 12).
ÁÙ¥iÃÒ©ú 
 ¤¤¥ô·NÂI C ªº®y¼Ð¦V¶q¬O§_¦b L(t) ¤W,
ºÝµø AC+CB=AB ¬O§_¦¨¥ß¦Ó©w(¨£²ßÃD 1).
¦]¦¹§Ú̧â AB ½u¬q©w°µ
¤¤¥ô·NÂI C ªº®y¼Ð¦V¶q¬O§_¦b L(t) ¤W,
ºÝµø AC+CB=AB ¬O§_¦¨¥ß¦Ó©w(¨£²ßÃD 1).
¦]¦¹§Ú̧â AB ½u¬q©w°µ 
 .
Y
.
Y  ,
«h A, B ©Ò¨M©wªºª½½u¦ÛµM´N©w°µ
,
«h A, B ©Ò¨M©wªºª½½u¦ÛµM´N©w°µ 
 ¤F
(°Ñ¬Ý²ßÃD2).
³o¼Ë©w¸q§¹¥þ²Å¦X§Ú̹ï½u¬q©Mª½½uªºª½Æ[»{ÃÑ,
¤£¥u¬O§Î¦¡¤W©M
¤F
(°Ñ¬Ý²ßÃD2).
³o¼Ë©w¸q§¹¥þ²Å¦X§Ú̹ï½u¬q©Mª½½uªºª½Æ[»{ÃÑ,
¤£¥u¬O§Î¦¡¤W©M 
 ±¡§ÎÃþ¦ü¦Ó¤w.
±¡§ÎÃþ¦ü¦Ó¤w.
¦A°²©w A ©M B ³£¤£¬OìÂI (§Y 
 ),
§ë¼vªº°ÝÃD¬Û·í©ó§ä OB ª½½u¤W©M A ³Ì±µªñªºÂI.
³] OB ½u¤W¥ô¤@ÂI¬°
),
§ë¼vªº°ÝÃD¬Û·í©ó§ä OB ª½½u¤W©M A ³Ì±µªñªºÂI.
³] OB ½u¤W¥ô¤@ÂI¬° 
 ,
«h
,
«h
 ©M A ªº¶ZÂ÷¬°
©M A ªº¶ZÂ÷¬°
 .
¦p¤U¥Î²³æªº¥N¼Æpºâ´N¥i¨M©w
.
¦p¤U¥Î²³æªº¥N¼Æpºâ´N¥i¨M©w 
 ªº³Ì¤pȩҦb. ¦]
ªº³Ì¤pȩҦb. ¦]
![\begin{eqnarray*}{\Vert x-\lambda{y}\Vert}^{2}&=&\Vert x\Vert^{2}-2(x,y)\lambda+...
...Vert x\Vert^{2}-{ \left[\frac{(x,y)}{\Vert y\Vert} \right]}^{2}.
\end{eqnarray*}](img46.gif) 
 ®É,
®É,
 ¨ú±o³Ì¤pÈ. 
³] D ¬°¥H
¨ú±o³Ì¤pÈ. 
³] D ¬°¥H 
 ¬°®y¼Ð¦V¶qªºÂI.
D ºÙ¬° A ¦b OB ¤Wªº§ë¼v(projection),
¦Ó OD ºÙ¬° OA ¦b OB ¤Wªº§ë¼v;
¤]¥i¥H»¡
¬°®y¼Ð¦V¶qªºÂI.
D ºÙ¬° A ¦b OB ¤Wªº§ë¼v(projection),
¦Ó OD ºÙ¬° OA ¦b OB ¤Wªº§ë¼v;
¤]¥i¥H»¡ 
 ¬° x ¦b y ¤è¦Vªº§ë¼v.
¤S¦¹®É
¬° x ¦b y ¤è¦Vªº§ë¼v.
¤S¦¹®É
 
 
 ²{¦b¨ú
²{¦b¨ú 
![$\theta\in{[0,\pi]}$](img51.gif) ,
¨Ï
,
¨Ï 
 «h OA ¦b OB ¤Wªº§ë¼v¬°
«h OA ¦b OB ¤Wªº§ë¼v¬°
 
 ¥iµø¬° OA ©M OB ªº§¨¨¤. °²¦p
¥iµø¬° OA ©M OB ªº§¨¨¤. °²¦p 
 ,
§Y(x,y)=0, «hºÙ x ©M y ««ª½
(per-pendicular) ©Î¥¿¥æ (orthogonal).
¬°¤F¤è«K°_¨£, §ÚÌ»{¬°¹s¦V¶q©M©Ò¦³¦V¶q³£««ª½.
Y
,
§Y(x,y)=0, «hºÙ x ©M y ««ª½
(per-pendicular) ©Î¥¿¥æ (orthogonal).
¬°¤F¤è«K°_¨£, §ÚÌ»{¬°¹s¦V¶q©M©Ò¦³¦V¶q³£««ª½.
Y  ¬°
¬° 
 ¤¤ªº¦V¶q,
«h»P u ¦P¤è¦Vªº³æ¦ì¦V¶q
¤¤ªº¦V¶q,
«h»P u ¦P¤è¦Vªº³æ¦ì¦V¶q  ªº½Ñ¤À¦V¶q«K¬O
u ©M½Ñ®y¼Ð¶b¶¡§¨¨¤ªº¾l©¶, §Ṳ́´ºÙ¤§¬° u ªº¤è¦V¾l©¶.
    
¥H¤W§Ú̦b
ªº½Ñ¤À¦V¶q«K¬O
u ©M½Ñ®y¼Ð¶b¶¡§¨¨¤ªº¾l©¶, §Ṳ́´ºÙ¤§¬° u ªº¤è¦V¾l©¶.
    
¥H¤W§Ú̦b 
 ¤¤¤Þ¶i½u¬q¡Bª½½u¡B§¨¨¤¡B§ë¼vµ¥Æ[©À,
¤£¥u¾A¦Xì¨Ó
¤¤¤Þ¶i½u¬q¡Bª½½u¡B§¨¨¤¡B§ë¼vµ¥Æ[©À,
¤£¥u¾A¦Xì¨Ó 
 ªº¤½¦¡, ¦Ó¥B©M
ªº¤½¦¡, ¦Ó¥B©M 
 ¤¤ªºª½Æ[§¹¥þ¬Û®e.
Cauchy ¤£µ¥¦¡¬O¤W±pºâ¤¤³Ì«nªºµ²ªG, §Ú̯S¦a±N¥¦¥Î©w²zªº§Î¦¡ªí¥X:
¤¤ªºª½Æ[§¹¥þ¬Û®e.
Cauchy ¤£µ¥¦¡¬O¤W±pºâ¤¤³Ì«nªºµ²ªG, §Ú̯S¦a±N¥¦¥Î©w²zªº§Î¦¡ªí¥X: 
   
![\begin{theorem}$($\emph{Cauchy ineqiality}$)$ . ³] $x,y\in{{\mathbb{R} }^{n}}$ ,...
...y=0$\space ©Î¦³ $\lambda\in{\mathbb{R} }$\space ¨Ï $x=\lambda y$ .
\end{theorem}](img57.gif) 
¤U±ªº©w²z¬O¥j¨åªº²¦¤ó©w²z (Pythagoras theorem) ªº±À¼s, ½ÐŪªÌ¦Û¤vÃÒ©ú.
 
¥H¤U´XÓµ²ªG³£¥i±q Cauchy ¤£µ¥¦¡±o¨ì:
![\begin{theorem}$($\emph{¤T¨¤§Î¤£µ¥¦¡}$)$ . ³] $x,y\in R^n$ , «h
\begin{displayma...
...±ø¥ó¬O $x=0$ , ©Î¦³¤@¹ê¼Æ $\lambda\geq{0}$ ,
¨Ï±o $y=\lambda{x}$ .
\end{theorem}](img59.gif) 
ÃÒ©ú. ±q Cauchy ¤£µ¥¦¡±o
 
Yµ¥¸¹¦¨¤§, «h 
 ,
±q¦Ó©Î x=0, ©Î¦³¤@¥¿¹ê¼Æ
,
±q¦Ó©Î x=0, ©Î¦³¤@¥¿¹ê¼Æ  ¦b, 
¨Ï
¦b, 
¨Ï 
 .
¤Ï¤§Y¦¹±ø¥ó¦¨¥ß, «h©öÃÒ¤£µ¥¦¡¤¤µ¥¸¹¦¨¥ß.
.
¤Ï¤§Y¦¹±ø¥ó¦¨¥ß, «h©öÃÒ¤£µ¥¦¡¤¤µ¥¸¹¦¨¥ß.
³o¤£µ¥¦¡«K¥s°µ¤T¨¤§Î¤£µ¥¦¡ (triangle inequality). §Q¥Î¥¦, §Ú̥ߧY±o¨ì
![\begin{theorem}³] $A$ , $B$ , $C$\space ¬° $\mathbb{R} ^n$\space ªº¤TÂI. «h\\
¥...
... , $B$ , $C$\space ¤TÂI¦@½u,
¥B $B$\space ¦b $A$ , $C$\space ¤§¶¡.
\end{theorem}](img64.gif) 
¦b¥»©w²z¤¤©Ò¦CÁ|ªº¶ZÂ÷ªº¤Tөʽ褤, ¤þ¤]¥s°µ¤T¨¤§Î¤£µ¥¦¡.
³o¼Ë±o¨ìªº¶ZÂ÷©M§Ú̪ºª½Æ[«D±`±µªñ.
¦]¦¹§ÚÌ»{¬° 
 ¤¤¶ZÂ÷ªºÆ[©À¬O 2 ¤Î 3 ºûªÅ¶¡¤¤¶ZÂ÷Æ[©Àªº¦ÛµM±À¼s.
¤¤¶ZÂ÷ªºÆ[©À¬O 2 ¤Î 3 ºûªÅ¶¡¤¤¶ZÂ÷Æ[©Àªº¦ÛµM±À¼s. 
 
 
 
 
