next up previous
Next: Triple integrals Up: 面積分與三重積分 Previous: 曲面的表面積

面積分

在本節中我們考慮三維空間中的一個固定的 continuously differentiable 曲面 $\displaystyle S: (x, y, z)=\phi(u, v), (u, v)\in D \subset {\mathbb{R} ^2}$. 在上節的討論中我們引入了向量

\begin{displaymath}\phi_u\times\phi_v=\left(\displaystyle\frac{\partial(y, z)}{\...
... \displaystyle\frac{\partial (x, y)}{\partial (u, v)}\right).
\end{displaymath}

計算表面積時我們曾利用過這向量的長度. 設 $(u_0, v_0) \in D$. 則 $\phi (u, v_0)$ $\phi (u_0, v)$ 均描寫曲面上的曲線. $\phi_u (u_0, v_0)$ $\phi_v (u_0, v_0)$ 分別是沿這兩條曲線的切線方向的向量. 因此 $\phi_u \times \phi_v$ (u0, v0) 的值和切平面互相垂直. 它的方向叫作 S法線 (normal) 方向. 因此我們得到下列二結果:

1) S $\phi(u_0, v_0)$ 處的切平面方程式為

\begin{displaymath}[(x, y, z)- \phi (u_0, v_0)]\cdot [ \phi_u (u_0, v_0) \times \phi_v(u_0, v_0)]=0.
\end{displaymath}

這方程式也可以寫成

\begin{displaymath}\left \vert
\begin{array}{ccc}
\displaystyle\frac{\partial x...
...tial v}\\
x-x_0 & y-y_0 & z-z_0
\end{array}\right \vert
=0,
\end{displaymath}

式中 $(x_0, y_0, z_0)=\phi (u_0, v_0)$, 且所有偏導函數的值均在 (u0, v0) 處取得.

2) 設 $\phi_u (u_0, v_0) \times \phi_v (u_0, v_0) \neq 0$, 則 S $\phi(u_0, v_0)$ 處的法線的參數方程式為

\begin{displaymath}(x, y, z)=\phi (u_0, v_0)+t[\phi_u (u_0, v_0) \times \phi_v (u_0, v_0)].
\end{displaymath}

它在該處的單位法向量為

\begin{displaymath}n=\frac{1}{\Vert\phi_u (u_0, v_0) \times \phi_v (u_0, v_0) \Vert}\phi_u (u_0,
v_0) \times \phi_v (u_0, v_0).
\end{displaymath}

現在介紹面積分的定義. 首先仿照關於曲線長的線積分的觀念, 我們定義在一曲面 S 上的函數 g(x, y, z) 關於 S 的表面積的面積分為

\begin{eqnarray*}\lefteqn{\int\!\int_S g(x, y, z)\, dA=\int\!\int_D g(\phi (u, v...
...\left[\frac{\partial(x, y)}{\partial(u, v)}\right]^2}\, du\, dv.
\end{eqnarray*}


以下舉兩個例子:

例 2   Evaluate $\int\!\int_S xy \, dA$, where S is the surface

\begin{displaymath}z=xy, \qquad x, y\in [0, 1].
\end{displaymath}

f 為定義於 $\mathbb{R} ^{3}$ 中的區域 D 上的連續可微分的 $\mathbb{R} ^{3}$ 值函數. 我們定義 f 的旋度 (curl) 為

\begin{displaymath}\nabla \times f=curl f=\left(\frac {\partial f_3}{\partial y}...
...artial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\right)
\end{displaymath}

這向量也可以寫成下形:

\begin{displaymath}\nabla \times f=\left \vert\begin{array}{ccc}\displaystyle\fr...
...\\
f_{1} & f_{2} & f_{3} \\ i & j & k \end{array}\right\vert
\end{displaymath}

英國數學家 George Gabriel Stokes (1819--1903) 曾推廣 Green 定理如下:
\begin{theorem}\textup{(Stokes).}\
Let $S$\space be a continuously differentiab...
...=\int\! \! \int_{s} (\nabla \times v)\cdot n\, dA
\end{displaymath}\end{theorem}

在本定理的敘述中, 所謂右手螺旋系 (right-hand screw), 純用直觀. 其嚴格的討論和嚴格的證明, 都留給高等微積分. 在 Stokes 定理中取 Sxy 平面中的一區域 D. 又設

\begin{displaymath}f_{1}(x, y, z) = f(x, y), \qquad f_{2}(x, y, z)=g(x, y),
\qquad f_{3}(x, y, z)=0.
\end{displaymath}

則有 $\nabla \times v=(g_{x}-f_{y})k$, 而 xy 平面依右手螺旋系的單位法向量又剛好為 k. 代入 Stokes 定理的公式中, 便得

\begin{displaymath}\int_{c} f\, dx+g \, dy=\int\!\int_{D} (g_{x}-f_{y})\, dA.
\end{displaymath}

這便是 Green 定理. 因此 Stokes 定理確是 Green 定理的推廣.

例 3   Let S be the part of the plane x+y+z=1 in the first octant, f(x, y, z)=(f1, f2, f3)=(z2, x2, y2) and C be the boundary curve of S. Find

\begin{displaymath}\int_{c} f_{1}\, dx+f_{2}\, dy+f_{3}\,
dz \qquad \textup{and}\qquad\int\!\int_{s} (\nabla \times v)\cdot n\, dA.\end{displaymath}

Solution. S may be parametrized as x=u, y=v, z=1-(u+v). Then $\displaystyle n=\frac{1}{\sqrt3}(1, 1, 1)$ and

\begin{eqnarray*}\lefteqn{\int\!\int_{s}(\nabla \times f)\cdot n\,
dA= \int\!\in...
...(x+y+z)\,
dA=\frac{2}{\sqrt3}\int\!\int_{\Delta}\sqrt{3}\, dA=1.
\end{eqnarray*}


where $\Delta$ denotes the projection of S on the xy-plane. In order to compute the line integral $\int_{c} f_{1}\, dx+f_{2}\, dy+f_{3}\, dz$, let C=C1+C2+C3, where

\begin{displaymath}C_{1} = {(1-t, t, 0): 0\leq t\leq 1},\end{displaymath}


\begin{displaymath}C_{2} = {(0, 1-s, s): 0\leq s\leq 1},\end{displaymath}

and to 0.12truecm $C_{3} = {(r, 0, 1-r): 0\leq r\leq 1}.$
Hence,

\begin{eqnarray*}\lefteqn{\int_{c} f_{1}\, dx+f_{2}\, dy+f_{3}\, dz
=\int_{c} z^...
...t)^2\,
dt+\int_{0}^{1} (1-s)^2\, ds\\
&=& 3\cdot \frac{1}{3}=1.
\end{eqnarray*}


Note that this example verifies the Stokes theorem.

$\quad$
1.
Let $a, b, c\in\mathbb{R} ^{3}$. Prove that the vector

\begin{displaymath}n=a\times b+b\times c+c\times a
\end{displaymath}

is orthogonal to the plane passing through the points a, b and c.
2.
Let f be a twice continuously differentiable function in a domain in $\mathbb{R} ^{3}$. Prove that $\nabla \times (\nabla f) = 0$.
3.
Let f be a scalar-valued function and v be a vector-valued function defined in a domain D in space. Assume that they both have continuous parital derivatives in D. Show that $\nabla \times (fv) = \nabla f \times v + f\nabla xv$.
4.
Compute

\begin{displaymath}\int\!\int_{s}(\cos x+\sin y)\, dA,
\end{displaymath}

where S is the portion of the plane x+y+z=1 lying in the first octant.
5.
Let f(x, y, z)=(x2, y2, z2), S be the sphere x2+y2 +z2+1, and n be the unit outward normal from S. Compute

\begin{displaymath}\int\!\int_{s}f \cdot n\, dA.
\end{displaymath}

6.
(a)
u=9x, v=3x+2x3+6xy2, w=3z, f(x, y, z) =(u, v, w). 求 curl $f = \nabla \times f$.
(b)
設 surface S $\displaystyle x =\frac{1}{\sqrt{2}}\cos \theta \cos \phi $, $\displaystyle y=\frac{1}{\sqrt{2}}\sin \theta \cos \phi $, $z=\sin \phi $, 其中 $\theta \in \left[0, 2\pi \right] $, $\displaystyle\phi \in \left[0, \frac{1}{2\pi} \right]$. 求 S 的單位外向法向量 n (unit normal vector to S).
(c)
fS 如 (a), (b) 所述, 試計算面積分 (surface integral)

\begin{displaymath}\int\!\int_{s}(\nabla \times f)\cdot n\, dA.
\end{displaymath}

7.
Compute

\begin{displaymath}\int\!\int v \cdot n\, dA,
\end{displaymath}

where v=xyk, k being the unit vector along the positive z -axis, and n is the unit outward normal to the surface S of the cube between the planes x=0, x=1, y=0, y=1, z=0 and z=1.
8.
u=9x, v=3x+2x3+6xy2, w=3z. S 為 ellipsoid

2x2+2y2+z2=1

之上半, n 為該 ellipsoid 的單位外向法向量. 試直接計算

\begin{displaymath}\int\!\int_{S}\nabla \times (u, v, w) \cdot n\, dA
\end{displaymath}

之值, 並用 Stokes 定理驗證之.
9.
Let T be a solid bounded by a smooth closed surface $\Sigma$ and let n be the unit outward normal vector to $\Sigma$. Assume that v is a continuously differentiable victor field in a domain containing T. Prove that

\begin{displaymath}\int\!\int_{\Sigma} (\textup{curl} v \cdot n)\, dS=0
\end{displaymath}

10.
R $\displaystyle R(1-\frac{1}{n})$ 為半徑做兩個同心圓. 從圓心 Om 條射線, 將二圓各分為 m 等分. 設大圓上的分點依次為 p1, p2, $\cdots$, pm 再設 Opk 和小圓的交點為 qk, $k=1, 2,\cdots , m$. 令 l(m, n) 為折線 $q_{1}p_{1}p_{2}q_{2}q_{3} \cdots q_{m}q_{1}$ 的長. 試計算 $\displaystyle\lim_{m\rightarrow\infty } {(l{m, m^2)}}$, $\displaystyle\lim_{n\to\infty}{l(n^2, n)}$ $\displaystyle\lim_{n\rightarrow\infty }{l(cn, n)}$ 之值, 式中 c>0.

next up previous
Next: Triple integrals Up: 面積分與三重積分 Previous: 曲面的表面積

1999-06-28